MGG_2024v15n5

Maize Genomics and Genetics 2024, Vol.15, No.5, 257-269 http://cropscipublisher.com/index.php/mgg 267 Chávez-Arias C.C., Ligarreto-Moreno G.A., Ramírez-Godoy A., and Restrepo-Díaz H., 2021, Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view, Frontiers in Plant Science, 12: 702841. https://doi.org/10.3389/fpls.2021.702841 PMID: 34367221 PMCID: PMC8341156 Cooper M., and Messina C., 2022, Breeding crops for drought-affected environments and improved climate resilience, The Plant Cell, 35: 162-186. https://doi.org/10.1093/plcell/koac321 PMID: 36370076 PMCID: PMC9806606 Dong L., Qi X.T., Zhu J.J., Liu C.L., Zhang X., Cheng B.J., Mao L., and Xie C.X., 2019, Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing, Plant Biotechnology Journal, 17: 1853-1855. https://doi.org/10.1111/pbi.13144 PMID: 31050154 PMCID: PMC6737015 Farfan I.D.B., de La Fuente G.M., Murray S.C., Isakeit T., Huang P.C., Warburton M., Williams P., Windham G.L., and Kolomiets M., 2015, Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics, PLoS One, 10(2): e0117737. https://doi.org/10.1371/journal.pone.0117737 PMID: 25714370 PMCID: PMC4340625 Gore M.A., Chia J.M., Elshire R.J., Sun Q., Ersoz E.S., Hurwitz B.L., Peiffer J.A., McMullen M.D., Grills G.S., Ross-Ibarra J., Ware D.H., and Buckler E.S., 2009, A first-generation haplotype map of maize, Science, 326(5956): 1115-1117. https://doi.org/10.1126/science.1177837 Huang W.Z., 2024, The dual role of agricultural products as food and fuel: energy conversion and utilization, Journal of Energy Bioscience, 15(1): 32-47. https://doi.org/10.5376/jeb.2024.15.0005 Hufford M.B., Seetharam A.S., Woodhouse M.R., Chougule K., Ou S., Liu J., Ricci W.A., Guo T., Olson A.J., Qiu Y., Coletta R.D. Tittes S.B., Hudson A.I., Marand A.P., Wei S., Lu Z., Wang B., Tello-Ruiz M., Piri R.D., Wang N., Kim D.W., Zeng Y., O’Connor C.H., Li X., Gilbert A. M., Baggs E., Krasileva K., Portwood J.L., Cannon E.K.S., Andorf C.M., Manchanda N., Snodgrass S., Hufnagel D.E., Jiang Q., Pedersen S., Syring M.L., Kudrna D., Llaca V., Fengler K., Schmitz R., Ross-Ibarra J., Yu J., Gent J., Hirsch C., Ware D., and Dawe R.K., 2021, De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes, Science, 373: 655-662. https://doi.org/10.1126/science.abg5289 PMID: 34353948 PMCID: PMC8733867 Hou J., Zhang J., Bao F., Zhang P., Han H., Tan H., Chen B., and Zhao F., 2024, The contribution of exotic varieties to maize genetic improvement, Molecular Plant Breeding, 15(4): 198-208. https://doi.org/10.5376/mpb.2024.15.0020 Jiao Y.P., Peluso P., Shi J.S., Liang T., Stitzer M.C., Wang B., Campbell M.S., Stein J.C., Wei X.H., Chin C.S., Guill K., Regulski M., Kumari S., Olson A., Gent J., Schneider K.L., Wolfgruber T.K., May M.R., Springer N.M., Antoniou E., McCombie W.R., Presting G.G., McMullen M., Ross-Ibarra J., Dawe R.K., Hastie A., Rank D.R., and Ware D.R., 2017, Improved maize reference genome with single-molecule technologies, Nature, 546(7659): 524-527. https://doi.org/10.1038/nature22971 PMID: 28605751 PMCID: PMC7052699 Kamali S., and Singh A., 2023, Genomic and transcriptomic approaches to developing abiotic stress-resilient Crops, Agronomy, 13(12): 2903. https://doi.org/10.3390/agronomy13122903 Kausch A., Nelson-Vasilchik K., Tilelli M., and Hague J., 2021, Maize tissue culture, transformation, and genome editing, In Vitro Cellular and Developmental Biology-Plant, 57(4): 653-671. https://doi.org/10.1007/s11627-021-10196-y Kausch A.P., Wang K., Kaeppler H.F., and Gordon-Kamm W., 2021, Maize transformation: history, progress, and perspectives, Molecular Breeding, 41(6): 38. https://doi.org/10.1007/s11032-021-01225-0 PMID: 37309443 PMCID: PMC10236110 Kimotho R.N., Baillo E.H., and Zhang Z.B., 2019, Transcription factors involved in abiotic stress responses in maize (Zeamays L.) and their roles in enhanced productivity in the post genomics era, PeerJ, 7: e7211. https://doi.org/10.7717/peerj.7211 Kole C., Muthamilarasan M., Henry R., Edwards D., Sharma R., Abberton M., Batley J., Bentley A., Blakeney M., Bryant J., Cai H.W., Çakır M., Cseke L.J., Cockram J., de Oliveira A.C., de Pace C., Dempewolf H., Ellison S., Gepts P., Greenland A., Hall A., Hori K., Hughes S., Humphreys M., Iorizzo M., Ismail A., Marshall A., Mayes S., Nguyen H.T., Ogbonnaya F.C., Ortiz R., Paterson A.H., Simon P.W., Tohme J., Tuberosa R., Valliyodan B., Varshney R.K., Wullschleger S.D., Yano M., and Prasad M., 2015, Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects, Frontiers in Plant Science, 6: 563. https://doi.org/10.3389/fpls.2015.00563 Labuschagne M., 2020, Developments in genomics relative to abiotic stress-tolerance breeding in maize during the past decade, 2020: 325-337. https://doi.org/10.1079/9781789240214.0325 Li C.Y., Li Y.Y., Song G.S., Yang D., Xia Z.C., Sun C.H., Zhao Y.L., Hou M., Zhang M.Y., Qi Z., Wang B.B., and Wang H.Y., 2023, Gene expression and eQTL analyses uncover natural variations underlying improvement of important agronomic traits during modern maize breeding, The Plant Journal, 115(3): 772-787. https://doi.org/10.1111/tpj.16260

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==