MGG_2024v15n5

Maize Genomics and Genetics 2024, Vol.15, No.5, 247-256 http://cropscipublisher.com/index.php/mgg 256 Pérez-Losada M., Arenas M., Galán J.C., Bracho M.A., Hillung J., García-González N., and González-Candelas F., 2020, High-throughput sequencing (HTS) for the analysis of viral populations, Infection, Genetics and Evolution, 80: 104208. https://doi.org/10.1016/j.meegid.2020.104208 Pradhan D., Kumar A., Singh H., and Agrawal U., 2019, High-throughput sequencing, Data Processing Handbook for Complex Biological Data Sources, 2019: 39-52. https://doi.org/10.1016/B978-0-12-816548-5.00004-6 Quijada N.M., Hernández M., and Rodríguez-Lázaro D., 2020, High-throughput sequencing and food microbiology, Advances in Food and Nutrition Research, 91: 275-300. https://doi.org/10.1016/bs.afnr.2019.10.003 Reon B.J., and Dutta A., 2016, Biological processes discovered by high-throughput sequencing, The American Journal of Pathology, 186(4): 722-732. https://doi.org/10.1016/j.ajpath.2015.10.033 Ritchie M.D., Holzinger E.R., Li R., Pendergrass S.A., and Kim D., 2015, Methods of integrating data to uncover genotype–phenotype interactions, Nature Reviews Genetics, 16(2): 85-97. https://doi.org/10.1038/nrg3868 PMID: 25582081 Romay M.C., Millard M.J., Glaubitz J.C., Peiffer J.A., Swarts K.L., Casstevens T.M., Elshire R.J., Acharya C.B., Mitchell S.E., Flint-Garcia S.A., McMullen M.D., Holland J.B., Buckler E.S., and Gardner C.A., 2013, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biology, 14(6): R55. https://doi.org/10.1186/gb-2013-14-6-r55 PMID: 23759205 PMCID: PMC3707059 Schrag T.A., Westhues, M., Schipprack, W., Seifert, F., Thiemann, A., Scholten, S., and Melchinger, A., 2018, Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize, Genetics, 208(4): 1373-1385. https://doi.org/10.1534/genetics.117.300374 PMID: 29363551 PMCID: PMC5887136 Wang Y.H., Tang Q.L., Pu L., Zhang H.W., and Li X.H., 2022, CRISPR-Cas technology opens a new era for the creation of novel maize germplasms, Frontiers in Plant Science, 13: 1049803. https://doi.org/10.3389/fpls.2022.1049803 PMID: 36589095 PMCID: PMC9800880 Wang Y.F., and Zhang L.M., 2024, Gene-driven future: breakthroughs and applications of marker-assisted selection in tree breeding, Molecular Plant Breeding, 15(3): 132-143. https://doi.org/10.5376/mpb.2024.15.0014 Westhues M., Schrag T.A., Heuer C., Thaller G., Utz H.F., Schipprack W., Thiemann A., Seifert F., Ehret A., Schlereth A., Stitt M., Nikoloski Z., Willmitzer L., Schön C.C., Scholten S., and Melchinger A., 2017, Omics-based hybrid prediction in maize, Theoretical and Applied Genetics, 130(9): 1927-1939. https://doi.org/10.1007/s00122-017-2934-0 Yang Y.D., Saand M.A., Huang L.Y., Abdelaal W.B., Zhang J., Wu Y., Li J., Sirohi M.H., and Wang F.Y., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 PMID: 34539683 PMCID: PMC8446515 Yang Y.R., Zhou R., and Kui L., 2017, Future livestock breeding: precision breeding based on multi-omics information and population personalization, Journal of Integrative Agriculture, 16(12): 2784-2791. https://doi.org/10.1016/S2095-3119(17)61780-5 Zhou J.Y., and Yan S.D., 2024, A comprehensive review of corn ethanol fuel production: from agricultural cultivation to energy application, Journal of Energy Bioscience, 15(3): 208-220. https://doi.org/10.5376/jeb.2024.15.0020

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==