Maize Genomics and Genetics 2024, Vol.15, No.5, 239-246 http://cropscipublisher.com/index.php/mgg 246 Sadessa K., Beyene Y., Ifie B., Suresh L., Olsen M.S., Ogugo V., Wegary D., Tongoona P., Danquah E., Offei S.K., Prasanna B.M., and Gowda M., 2022, Identification of genomic regions associated with agronomic and disease resistance traits in a large set of multiple DH populations, Genes, 13(2): 351. https://doi.org/10.3390/genes13020351 PMID: 35205395 PMCID: PMC8872035 Song B.X., Wang H., Wu Y.Y., Rees E., Gates D.J,, Burch M., Bradbury P.J., Ross-Ibarra J., Kellogg E.A., Hufford M.B., Romay M.C., and Buckler E., 2020, Constrained non-coding sequence provides insights into regulatory elements and loss of gene expression in maize, bioRxiv, 12: 2020-07. https://doi.org/10.1101/2020.07.11.192575 Takuno S., Ralph P., Swarts K., Elshire R.J., Glaubitz J.C., Buckler E.S., Hufford M.B., and Ross-Ibarra J., 2015, Independent molecular basis of convergent highland adaptation in maize, Genetics, 200(4): 1297-1312. https://doi.org/10.1534/genetics.115.178327 PMID: 26078279 PMCID: PMC4571994 Tang H.B., Bomhoff M.D., Briones E., Zhang L.S., Schnable J.C., and Lyons E., 2015, SynFind: compiling syntenic regions across any set of genomes on demand, Genome Biology and Evolution, 7(12): 3286-3298. https://doi.org/10.1093/gbe/evv219 PMID: 26560340 PMCID: PMC4700967 Tian L., Ku L.X., Yuan Z., Wang C.L., Su H.H., Wang S.X., Song X.C., Dou D.D., Ren Z.Z., Lai J.S., Liu T., Du C.G., and Chen Y.H., 2021, Large-scale reconstruction of the chromatin structures of maize temperate and tropical inbred lines, Journal of Experimental Botany, 72(10): 3582-3596. https://doi.org/10.1093/jxb/erab087 PMID: 33677565 Wang N., Liu B.J., Liang X.L., Zhou Y.H., Song J., Yang J., Yong H.J., Weng J.F., Degui Zhang D.G., Li M.S., Nair S., Vicente F.S., Hao Z.F., Xuecai Zhang X.C., and Li X.H., 2019, Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines, Molecular Breeding, 39: 1-16. https://doi.org/10.1007/s11032-019-1013-4 Wang X.Y., Wang J.P., Jin D.C., Guo H., Lee T.H., Liu T., and Paterson A.H., 2015, Genome alignment spanning major poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events, Molecular Plant, 8(6): 885-898. https://doi.org/10.1016/j.molp.2015.04.004 PMID: 25896453 Wang Y.Q., Li J.Q., Li M.Y., Li Y.T., Zhao Z.B., Li C., and Yue J., 2022, Genome-wide characterization of remorin genes in foxtail millet reveals their evolution and response to abiotic stresses, Diversity, 14(9): 711. https://doi.org/10.3390/d14090711 Westhues M., Schrag T.A., Heuer C., Thaller G., Utz H.F., Schipprack W., Thiemann A., Seifert F., Ehret A., Schlereth A., Stitt M., Nikoloski Z.,Willmitzer L., Schön C.C., Scholten S., and Melchinger A.E., 2017, Omics-based hybrid prediction in maize, Theoretical and Applied Genetics, 130: 1927-1939. https://doi.org/10.1007/s00122-017-2934-0 PMID: 28647896 Yang Y.D., Saand M.A., Huang L.Y., Abdelaal W.B., Zhang J., Wu Y., Li J., Sirohi M.H., and Wang F.Y., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 PMID: 34539683 PMCID: PMC8446515 Zhang F., Xue H.Z., Dong X.R., Li M., Zheng X.M., Li Z.K., Xu J.L., Wang W.S., and Wei C.C., 2022, Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes, Genome Research, 32: 853-863. https://doi.org/10.1101/gr.276015.121 PMID: 35396275 PMCID: PMC9104699
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==