MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 204-217 http://cropscipublisher.com/index.php/mgg 217 https://doi.org/10.1007/s11032-021-01221-4 PMid:37309328 PMCid:PMC10236107 Romay M., Millard M., Glaubitz J., Peiffer J., Swarts K., Casstevens T., Elshire R., Acharya C., Mitchell S., Flint-Garcia S., McMullen M., Holland J., Buckler E., and Gardner C., 2013, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biology, 14: 1-18. https://doi.org/10.1186/gb-2013-14-6-r55 Samantara K., Shiv A., Sousa L., Sandhu K., Priyadarshini P., and Mohapatra S., 2021, A comprehensive review on epigenetic mechanisms and application of epigenetic modifications for crop improvement, Environmental and Experimental Botany, 188: 104479. https://doi.org/10.1016/j.envexpbot.2021.104479 Thudi M., Palakurthi R., Schnable J., Chitikineni A., Dreisigacker S., Mace E., Srivastava R., Satyavathi C., Odeny D., Tiwari V., Lam H., Hong Y., Singh V., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S., Close T., Shubo W., and Varshney R., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351 Tonosaki K., Fujimoto R., Dennis E., Raboy V., and Osabe K., 2022, Will epigenetics be a key player in crop breeding?, Frontiers in Plant Science, 13: 958359. https://doi.org/10.3389/fpls.2022.958350 Varshney R., Bohra A., Yu J., Graner A., Zhang Q., and Sorrells M., 2021, Designing future crops: genomics-assisted breeding comes of age, Trends in Plant Science, 26(6): 631-649. https://doi.org/10.1016/j.tplants.2021.03.010 Varshney R., Mohan S., Gaur P., Gangarao N., Pandey M., Pandey M., Bohra A., Sawargaonkar S., Chitikineni A., Kimurto P., Janila P., Saxena K., Fikre A., Sharma M., Rathore A., Pratap A., Tripathi S., Datta S., Chaturvedi S., Mallikarjuna N., Anuradha G., Babbar A., Choudhary A., Mhase M., Bharadwaj C., Mannur D., Harer P., Guo B., Liang X., Nadarajan N., and Gowda C., 2013, Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics, Biotechnology Advances, 31(8): 1120-1134. https://doi.org/10.1016/j.biotechadv.2013.01.001 Wan X., Wu S., Li Z., Dong Z., An X., Ma B., Tian Y., and Li J., 2019, Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives, Molecular Plant, 12(3): 321-342. https://doi.org/10.1016/j.molp.2019.01.014 Wang J., and Doudna J., 2023, CRISPR technology: A decade of genome editing is only the beginning, Science, 379(6629): eadd8643. https://doi.org/10.1126/science.add8643 Zhang M., Kong D., and Wang H., 2023, Genomic landscape of maize domestication and breeding improvement, Seed Biology, 2(1): 9. https://doi.org/10.48130/seedbio-2023-0009 Zhou P., Hirsch C., Briggs S., and Springer N., 2019, Dynamic patterns of gene expression additivity and regulatory variation throughout maize development, Molecular Plant, 12(3): 410-425. https://doi.org/10.1016/j.molp.2018.12.015 Zhou P., Li Z., Magnusson E., Cano F., Crisp P., Noshay J., Grotewold E., Hirsch C., Briggs S., and Springer N., 2020, Meta gene regulatory networks in maize highlight functionally relevant regulatory interactions, Plant Cell, 32: 1377-1396. https://doi.org/10.1105/tpc.20.00080

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==