MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 204-217 http://cropscipublisher.com/index.php/mgg 216 Kakoulidou I., Avramidou E., Baránek M., Brunel-Muguet S., Farrona S., Johannes F., Kaiserli E., Lieberman-Lazarovich M., Martinelli F., Mladenov V., Testillano P., Vassileva V., and Maury S., 2021, Epigenetics for crop improvement in times of global change, Biology, 10(8): 766. Kausch A., Wang K., Kaeppler H., and Gordon-Kamm W., 2021, Maize transformation: history, progress, and perspectives, Molecular Breeding, 41: 1-36. https://doi.org/10.1007/s11032-021-01225-0 PMid:37309443 PMCid:PMC10236110 Kumlehn J., Pietralla J., Hensel G., Pacher M., and Puchta H., 2018, The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology, Journal of Integrative Plant Biology, 60(12): 1127-1153. https://doi.org/10.1111/jipb.12734 PMid:30387552 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a nobel prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University Science B, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 PMid:33835761 PMCid:PMC8042526 Li C., Li Y., Song G., Yang D., Xia Z., Sun C., Zhao Y., Hou M., Zhang M., Qi Z., Wang B., and Wang H., 2023, Gene expression and eQTL analyses uncover natural variations underlying improvement of important agronomic traits during modern maize breeding, The Plant Journal, 115(3): 772-787. https://doi.org/10.1111/tpj.16260 PMid:37186341 Li C., Song W., Luo Y., Gao S., Zhang R., Shi Z., Wang X., Wang R., Wang F., Wang J., Zhao Y., Su A., Wang S., Li X., Luo M., Wang S., Zhang Y., Ge J., Tan X., Yuan Y., Bi X., He H., Yan J., Wang Y., Hu S., and Zhao J., 2019, The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize, Molecular Plant, 12(3): 402-409. https://doi.org/10.1016/j.molp.2019.02.009 PMid:30807824 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 PMid:31727474 Merrick L., Herr A., Sandhu K., Lozada D., and Carter A., 2022, Optimizing plant breeding programs for genomic selection, Agronomy, 12(3): 714. https://doi.org/10.20944/preprints202202.0048.v1. Monsur M., Shao G., Lv Y., Ahmad S., Wei X., Hu P., and Tang S., 2020, Base editing: the ever expanding clustered regularly interspaced short palindromic repeats (CRISPR) tool kit for precise genome editing in plants, Genes, 11(4): 466. https://doi.org/10.3390/genes11040466 Moon S., Kim D., Ko J., and Kim Y., 2019, Recent advances in the CRISPR genome editing tool set, Experimental and Molecular Medicine, 51(11): 1-11. https://doi.org/10.1038/s12276-019-0339-7. Morrell, P., Buckler, E., and Ross-Ibarra, J., 2011, Crop genomics: advances and applications, Nature Reviews Genetics, 13: 85-96. https://doi.org/10.1038/nrg3097 Muntean L., ONA A., Berindean I., Racz I., and Muntean S., 2022, Maize breeding: from domestication to genomic tools, Agronomy, 12(10): 2365. https://doi.org/10.3390/agronomy12102365 Nuss E., and Tanumihardjo S., 2010, Maize: a paramount staple crop in the context of global nutrition, Comprehensive Reviews in Food Science and Food Safety, 9(4): 417-436. https://doi.org/10.1111/j.1541-4337.2010.00117.x Oka R., Zicola J., Weber B., Anderson S., Hodgman C., Gent J., Wesselink J., Springer N., Hoefsloot H., Turck F., and Stam M., 2017, Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize, Genome Biology, 18: 1-24. https://doi.org/10.1186/s13059-017-1273-4 Ortiz R., Taba S., Tovar V., Mezzalama M., Xu Y., Yan J., and Crouch J., 2010, Conserving and enhancing maize genetic resources as global public goods-a perspective from CIMMYT, Crop Science, 50: 13-28. https://doi.org/10.2135/cropsci2009.06.0297 Palacios-Rojas N., McCulley L., Kaeppler M., Titcomb T., Gunaratna N., Lopez-Ridaura S., and Tanumihardjo S., 2020, Mining maize diversity and improving its nutritional aspects within agro-food systems, Comprehensive Reviews in Food Science and Food Safety, 19(4): 1809-1834. https://doi.org/10.1111/1541-4337.12552 PMid:33337075 Parvathaneni R., Bertolini E., Shamimuzzaman M., Vera D., Lung P., Rice B., Zhang J., Brown P., Lipka A., Bass H., and Eveland A., 2019, The regulatory landscape of early maize inflorescence development, Genome Biology, 21: 1-33. https://doi.org/10.1186/s13059-020-02070-8 PMid:32631399 PMCid:PMC7336428 Ran F., Hsu P., Wright J., Agarwala V., Agarwala V., Scott D., and Zhang F., 2013, Genome engineering using the CRISPR-Cas9 system, Nature Protocols, 8: 2281-2308. https://doi.org/10.1038/nprot.2013.143 Rice B., and Lipka A., 2021, Diversifying maize genomic selection models, Molecular Breeding, 41(5): 33..

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==