MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 191-203 http://cropscipublisher.com/index.php/mgg 202 Liu M., Fan W., Wang N., Dong P., Zhang T., Yue M., and Li Z., 2018, Evolutionary analysis of plastid genomes of Seven lonicera L., species: implications for sequence divergence and phylogenetic relationships, International Journal of Molecular Sciences, 19(12): 4039. https://doi.org/10.3390/ijms19124039. PMid:30558106 PMCid:PMC6321470 López M., Fass M., Rivas J., Carbonell-Caballero J., Vera P., Puebla A., Defacio R., Dopazo J., Paniego N., Hopp H., and Lia V., 2021, Plastome genomics in South American maize landraces: chloroplast lineages parallel the geographic structuring of nuclear gene pools, Annals of Botany, 128(1): 115-125. https://doi.org/10.1093/aob/mcab038. PMid:33693521 PMCid:PMC8318110 Mano Y., and Omori F., 2013, Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zeamays subsp. mays), Annals of Botany, 112(6): 1125-1139. https://doi.org/10.1093/aob/mct160. PMid:23877074 PMCid:PMC3783227 Moghaddam M., and Kazempour-Osaloo S., 2020, Extensive survey of the ycf4 plastid gene throughout the IRLC legumes: Robust evidence of its locus and lineage specific accelerated rate of evolution, pseudogenization and gene loss in the tribe Fabeae, PLoS One, 15(3): e0229846. https://doi.org/10.1371/journal.pone.0229846. PMid:32134967 PMCid:PMC7058334 Orton L., Burke S., Wysocki W., and Duvall M., 2017, Plastid phylogenomic study of species within the genus Zea: rates and patterns of three classes of microstructural changes, Current Genetics, 63: 311-323. https://doi.org/10.1007/s00294-016-0637-8 PMid:27488804 Ping J., Hao J., Li J., Yang Y., Su Y., and Wang T., 2022, Loss of the IR region in conifer plastomes: changes in the selection pressure and substitution rate of protein‐coding genes, Ecology and Evolution, 12(1): e8499. https://doi.org/10.1002/ece3.8499 PMid:35136556 PMCid:PMC8809450 Postel Z., and Touzet P., 2020, Cytonuclear genetic incompatibilities in plant speciation, Plants, 9: 487. https://doi.org/10.3390/plants9040487 PMid:32290056 PMCid:PMC7238192 Riddle N., Kato A., and Birchler J., 2006, Genetic variation for the response to ploidy change in Zeamays L., Theoretical and Applied Genetics, 114: 101-111. https://doi.org/10.1007/s00122-006-0414-z. PMid:17053922 Rogalski M., Vieira L., Fraga H., and Guerra M., 2015, Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology, Frontiers in Plant Science, 6: 586. https://doi.org/10.3389/fpls.2015.00586 PMid:26284102 PMCid:PMC4520007 Sabir J., Schwarz E., Ellison N., Zhang J., Baeshen N., Mutwakil M., Jansen R., and Ruhlman T., 2014, Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes, Plant Biotechnology Journal, 12(6): 743-754. https://doi.org/10.1111/pbi.12179 PMid:24618204 Sierra J., Escobar-Tovar L., and León P., 2023, Plastids: diving into their diversity, functions, and their role in plant development, Journal of Experimental Botany, ;74(8): 2508-2526. https://doi.org/10.1093/jxb/erad044 PMid:36738278 Storme N., and Mason A., 2014, Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance, Current Plant Biology, 1: 10-33. https://doi.org/10.1016/j.cpb.2014.09.002\ Sugimoto H., Hirano M., Tanaka H., Tanaka T., Kitagawa-Yogo R., Muramoto N., and Mitsukawa N., 2020, Plastid-targeted forms of restriction endonucleases enhance the plastid genome rearrangement rate and trigger the reorganization of its genomic architecture, The Plant Journal, 102(5): 1042-1057. https://doi.org/10.1111/tpj.14687 PMid:31925982 Sun S., Fu P., Zhou X., Cheng Y., Zhang F., Chen S., and Gao Q., 2018, The complete plastome sequences of seven species in gentiana sect, kudoa (Gentianaceae): insights into plastid gene loss and molecular evolution, Frontiers in Plant Science, 9: 493. https://doi.org/10.3389/fpls.2018.00493 Thode V., Lohmann L., and Sanmartín I., 2020, Evaluating character partitioning and molecular models in plastid phylogenomics at low taxonomic levels: a case study using Amphilophium (Bignonieae, Bignoniaceae), Journal of Systematics and Evolution, 58. https://doi.org/10.1111/jse.12579 Tripathi D., Oldenburg, D., and Bendich, A., 2022, Analysis of the plastid genome sequence during maize seedling development, Frontiers in Genetics, 13 :870115. https://doi.org/10.3389/fgene.2022.870115

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==