MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 182-190 http://cropscipublisher.com/index.php/mgg 190 Gates D.J., Runcie D., Janzen G., Navarro A., Willcox M., Sonder K., Snodgrass S., Rodríguez-Zapata F., Sawers R., Rellán-Álvarez R., Buckler E., Hearne S., Hufford M., and Ross-Ibarra J., 2019, Single-gene resolution of locally adaptive genetic variation in Mexican maize, bioRxiv, 18: 706739.. ht tps://doi.org/10.1101/706739 Haberer G., Kamal N., Bauer E., Gundlach H., Fischer I., Seidel M., Spannagl M., Marcon C., Ruban A., Urbany C., Nemri A., Hochholdinger F., Ouzunova M., Houben A., Schön C., and Mayer K., 2020, European maize genomes highlight intraspecies variation in repeat and gene content, Nature Genetics, 52: 950-957. https://doi.org/10.1038/s41588-020-0671-9 He F., Pasam R., Shi F., Kant S., Keeble-Gagnère G., Kay P., Forrest K., Fritz A., Hucl P., Wiebe K., Knox R., Cuthbert R., Pozniak C., Akhunova A., Morrell P., Davies J., Webb S., Spangenberg G., Hayes B., Daetwyler H., Tibbits J., Hayden M., and Akhunov E., 2019, Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome, Nature Genetics, 51: 896-904. https://doi.org/10.1038/s41588-019-0382-2. Hu H., Crow T., Nojoomi S., Schulz A., Hufford M., Flint-Garcia S., Sawers R., Rellán-Álvarez R., Estévez-Palmas J., Ross-Ibarra J., and Runcie D., 2022, Allele-specific expression reveals multiple paths to highland adaptation in maize, Molecular Biology and Evolution, 39(11): msac239. https://doi.org/10.1093/molbev/msac239. Hufford M., Seetharam A., Woodhouse M., Chougule K., Ou S., Liu J., Ricci W., Guo T., Olson A., Qiu Y., Coletta R., Tittes S., Hudson A., Marand A., Wei S., Lu Z., Wang B., Tello-Ruiz M., Piri R., Wang N., Kim D., Zeng Y., O'Connor C., Li X., Gilbert A., Baggs E., Krasileva K., Portwood J., Cannon E., Andorf C., Manchanda N., Snodgrass S., Hufnagel D., Jiang Q., Pedersen S., Syring M., Kudrna D., Llaca V., Fengler K., Schmitz R., Ross-Ibarra J., Yu J., Gent J., Hirsch C., Ware D., and Dawe R., 2021, De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes, Science, 373: 655-662. https://doi.org/10.1126/science.abg5289. Kistler L., Thakar H., VanDerwarker A., Domic A., Bergström A., George R., Harper T., Allaby R., Hirth K., and Kennett D., 2020, Archaeological Central American maize genomes suggest ancient gene flow from South America, Proceedings of the National Academy of Sciences of the United States of America, 117: 33124-33129. https://doi.org/10.1073/pnas.2015560117 Kong D., Wang B., and Wang H., 2020, UPA2 and ZmRAVL1: Promising targets of genetic improvement of maize plant architecture, Journal of Integrative Plant Biology, 62(4):394-397. https://doi.org/10.1111/jipb.12873 Lal K., Kumar S., Singh L., Singh H., Singh M., and Kumar A., 2020, Genetic study of certain quantitative traits in maize (Zeamays L.), International Journal of Current Microbiology and Applied Sciences, 9: 2508-2513. https://doi.org/10.20546/ijcmas.2020.905.287 Ma J., Cao Y., Wang Y., and Ding Y., 2022, Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing, Frontiers in Plant Science,13: 972791. https://doi.org/10.3389/fpls.2022.972791 Moreno-Letelier A., Aguirre-Liguori J., Piñero D., Vázquez-Lobo A., and Eguiarte L., 2020, The relevance of gene flow with wild relatives in understanding the domestication process, Royal Society Open Science, 7(4): 191545. https://doi.org/10.1098/rsos.191545 Rojas-Barrera I., Wegier A., González J., Owens G., Rieseberg L., and Piñero D., 2019, Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties, Proceedings of the National Academy of Sciences, 116: 21302-21311. https://doi.org/10.1073/pnas.1817664116 Stitzer M., and Ross-Ibarra J., 2018, Maize domestication and gene interaction, The New Phytologist, 220(2): 395-408. https://doi.org/10.1111/nph.15350 Wijayasekara D., and Ali A., 2021, Evolutionary study of maize dwarf mosaic virus using nearly complete genome sequences acquired by next-generation sequencing, Scientific Reports, 11(1): 18786. https://doi.org/10.1038/s41598-021-98299-9 Wisser R., Fang Z., Holland J., Teixeira J., Dougherty J., Weldekidan T., Leon N., Flint-Garcia S., Lauter N., Murray S., Xu W., and Hallauer A., 2019, The Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize, Genetics, 213(4): 1479-1494. https://doi.org/10.1534/genetics.119.302780 Xu G., Lyu J., Li Q., Liu H., Wang D., Zhang M., Springer N., Ross-Ibarra J., and Yang J., 2020, Evolutionary and functional genomics of DNA methylation in maize domestication and improvement, Nature Communications, 11(1): 5539. https://doi.org/10.1038/s41467-020-19333-4

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==