MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 171-181 http://cropscipublisher.com/index.php/mgg 181 Mano Y., Omori F., Takamizo T., Kindiger B., Bird R., and Loáisiga C., 2006, Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings, Plant and Soil, 281: 269-279. https://doi.org/10.1007/s11104-005-4268-y Rivera-Rodríguez D., Mastretta‐Yanes A., Wegier A., Larios L., Santacruz-Ruvalcaba F., Corral J., Hernández B., and González J., 2023, Genomic diversity and population structure of teosinte (Zea spp.) and its conservation implications, PLoS One, 18(10): e0291944. Sahoo S., Adhikari S., Joshi A., and Singh N., 2021, Use of wild progenitor teosinte in maize (Zea mays subsp. mays) improvement: present status and future prospects, Tropical Plant Biology, 14: 156-179. https://doi.org/10.1007/s12042-021-09288-1 Studer A., and Doebley J., 2012, Evidence for a natural allelic series at the maize domestication locus teosinte branched1, Genetics, 191: 951-958. https://doi.org/10.1534/genetics.112.138479. PMid:22505628 PMCid:PMC3389986 Tian J., Wang C., Xia J., Wu L., Xu G., Wu W., Li D. Qin W., Han X., Chen Q., Jin W., and Tian F., 2019, Teosinte ligule allele narrows plant architecture and enhances high-density maize yields, Science, 365: 658-664 https://doi.org/10.1126/science.aax5482 PMid:31416957 Wang H., Hou J., Ye P., Hu L., Huang J., Dai Z., Zhang B., Dai S., Que J., Min H., Chen G., Wang Y., Jiang M., Liang Y., Li L., Zhang X., and Lai Z., 2021, A Teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize, Molecular Plant, 14(11): 1846-1863. https://doi.org/10.1016/j.molp.2021.07.008. PMid:34271176 Wang K., Zhang Z., Sha X., Yu P., Li Y., Zhang D., Liu X., He G., Li Y., Wang T., Guo J., Chen J., and Li C., 2023, Identification of a new QTL underlying seminal root number in a maize-teosinte population, Frontiers in Plant Science, 14: 1132017. https://doi.org/10.3389/fpls.2023.1132017 PMid:36824192 PMCid:PMC9941338 Warburton M., Wilkes G., Taba S., Charcosset A., Mir C., Dumas F., Madur D., Dreisigacker S., Bedoya C., Prasanna B., Xie C., Hearne S., and Franco J., 2011, Gene flow among different teosinte taxa and into the domesticated maize gene pool, Genetic Resources and Crop Evolution, 58: 1243-1261. https://doi.org/10.1007/s10722-010-9658-1 Weber A., Briggs W., Rucker J., Baltazar B., Sánchez-Gonzalez J., Feng P., Buckler E., and Doebley J., 2008, The genetic architecture of complex traits in teosinte (Zeamays ssp. parviglumis): new evidence from association mapping, Genetics, 180: 1221-1232. https://doi.org/10.1534/genetics.108.090134. PMid:18791250 PMCid:PMC2567369 Xu G., Cao J., Wang X., Chen Q., Jin W., Li Z., and Tian F., 2019, Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte, Plant Cell, 31: 1990-2009. https://doi.org/10.1105/tpc.19.00111 PMid:31227559 PMCid:PMC6751114 Yang C., Samayoa L., Bradbury P., Olukolu B., Xue W., York A., Tuholski M., Wang W., Daskalska L., Neumeyer M., Sanchez-Gonzalez J., Romay M., Glaubitz J., Sun Q., Buckler E., Holland J., and Doebley J., 2019, The genetic architecture of teosinte catalyzed and constrained maize domestication, Proceedings of the National Academy of Sciences of the United States of America, 116: 5643-5652. https://doi.org/10.1073/pnas.1820997116 PMid:30842282 PMCid:PMC6431195 Zavala-López M., López-Tavera E., Figueroa-Cárdenas J., Serna-Saldívar S., and García‐Lara S., 2018, Screening of major phenolics and antioxidant activities in teosinte populations and modern maize types, Journal of Cereal Science, 79: 276-285. https://doi.org/10.1016/J.JCS.2017.11.007 Zhang X., Lu M., Xia A., Xu T., Cui Z., Zhang R., Liu W., and He Y., 2021, Genetic analysis of three maize husk traits by QTL mapping in a maize-teosinte population, BMC Genomics, 22: 1-9. https://doi.org/10.1186/s12864-021-07723-x PMid:34034669 PMCid:PMC8152318 Zobrist J., Martin-Ortigosa S., Lee K., Azanu M., Ji Q., and Wang K., 2021, Transformation of tosinte (Zeamays ssp. parviglumis) via biolistic bombardment of seedling-derived callus tissues, Frontiers in Plant Science, 12: 773419. https://doi.org/10.3389/fpls.2021.773419 PMid:34956270 PMCid:PMC8696365

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==