MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 171-181 http://cropscipublisher.com/index.php/mgg 180 Evans M., and Kermicle J., 2001, Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize, Theoretical and Applied Genetics, 103: 259-265. https://doi.org/10.1007/s001220100549 Fang H., Fu X., Wang Y., Xu J., Feng H., Li W., Xu J., Jittham O., Zhang X., Zhang L., Yang N., Xu G., Wang M., Li X., Li J., Yan J., and Yang X., 2019, Genetic basis of kernel nutritional traits during maize domestication and improvement, The Plant Journal, 101(2): 278-292. https://doi.org/10.1111/tpj.14539 PMid:31529523 Fu Y., Xu G., Chen H., Wang X., Chen Q., Huang C., Li D., Xu D., Tian J., Wu W., Lu S., Li C., and Tian F., 2019, QTL mapping for leaf morphology traits in a large maize-teosinte population, Molecular Breeding, 39: 1-13. https://doi.org/10.1007/s11032-019-1012-5 Gao H., Gadlage M., Lafitte H., Lenderts B., Yang M., Schroder M., Farrell J., Snopek K., Peterson D., Feigenbutz L., Jones S., Clair G., Rahe M., Sanyour-Doyel N., Peng C., Wang L., Young J., Beatty M., Dahlke B., Hazebroek J., Greene T., Cigan A., Chilcoat N., and Meeley R., 2020, Superior field performance of waxy corn engineered using CRISPR-Cas9, Nature Biotechnology, 38: 579-581. https://doi.org/10.1038/s41587-020-0444-0 PMid:32152597 Gasca-Pineda J., Gutiérrez-Guerrero Y., Aguirre-Planter E., and Eguiarte L., 2020, The role of environment, local adaptation, and past climate fluctuation on the amount and distribution of genetic diversity in two subspecies of Mexican wild Zeamays, American Journal of Botany, 107(11): 1542-1554. https://doi.org/10.1002/ajb2.1561 PMid:33205455 González J., Corral J., García G., Ojeda G., Larios L., Holland J., Medrano R., and Romero G., 2018, Ecogeography of teosinte, PLoS One, 13(2): e0192676. https://doi.org/10.1371/journal.pone.0192676 PMid:29451888 PMCid:PMC5815594 Huang J., Gao Y., Jia H., and Zhang Z., 2016, Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication, Molecular Ecology Resources, 16. https://doi.org/10.1111/1755-0998.12526 PMid:26990495 Hubbard L., McSteen P., Doebley J., and Hake S., 2002, Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte, Genetics, 162(4): 1927-1935. https://doi.org/10.1093/genetics/162.4.1927 PMid:12524360 PMCid:PMC1462370 Joshi A., Adhikari S., and Singh N., 2021, Mapping genomic regions for red flour beetle (Tribolium castaneum(Herbst)) resistance in teosinte (Zea mays L. subsp. parviglumis H. H. Iltis and Doebley) derived maize backcross inbred line population, Genetic Resources and Crop Evolution, 68: 1529-1544. https://doi.org/10.1007/s10722-020-01083-3 Karn A., Gillman J., and Flint-Garcia S., 2017, Genetic analysis of teosinte alleles for kernel composition traits in maize, G3: Genes|Genomes|Genetics, 7: 1157-1164. https://doi.org/10.1534/g3.117.039529 PMid:28188181 PMCid:PMC5386864 Kumar A., Singh N., Adhikari S., and Joshi A., 2020, Morphological and molecular characterization of teosinte derived maize population, Indian Journal of Genetics and Plant Breeding, 79(4): 670-677. https://doi.org/10.31742/IJGPB.79.4.4 Kumar A., Singh V., Saran B., Al‐Ansari N., Singh V., Adhikari S., Joshi A., Singh N., and Vishwakarma D., 2022, Development of novel hybrid models for prediction of drought-and stress-tolerance indices in teosinte introgressed maize lines using artificial intelligence techniques, Sustainability. 14(4): 2287. https://doi.org/10.3390/su14042287 Li Z., Han L., Luo Z., and Li L., 2021, Single‐molecule long‐read sequencing reveals extensive genomic and transcriptomic variation between maize and its wild relative teosinte (Zeamays ssp. parviglumis), Molecular Ecology Resources, 22: 272-282. https://doi.org/10.1111/1755-0998.13454 PMid:34157795 Liu L., Huang J., He L., Liu N., Du Y., Hou R., Du H., Qiu F., and Zhang Z., 2019, Dissecting the genetic architecture of important traits that enhance wild germplasm resource usage in modern maize breeding, Molecular Breeding, 39: 1-11. https://doi.org/10.1007/s11032-019-1061-9 Mano Y., and Omori F., 2007, Breeding for flooding tolerant maize using "teosinte" as a germplasm resource, Plant Root, 1: 17-21. https://doi.org/10.3117/PLANTROOT.1.17 Mano Y., and Omori F., 2013, Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zeamays subsp. mays), Annals of Botany, 112(6): 1125-1139. https://doi.org/10.1093/aob/mct160 PMid:23877074 PMCid:PMC3783227 Mano Y., Omori F., Takamizo T., Kindiger B., Bird R., and Loáisiga C., 2006, Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings, Plant and Soil, 281: 269-279.

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==