Maize Genomics and Genetics 2024, Vol.15, No.4, 160-170 http://cropscipublisher.com/index.php/mgg 170 Xu G., Lyu J., Li Q., Liu H., Wang D., Zhang M., Springer N., Ross-Ibarra J., and Yang J., 2020, Evolutionary and functional genomics of DNA methylation in maize domestication and improvement, Nature Communications, 11(1): 5539. https://doi.org/10.1038/s41467-020-19333-4 PMid:33139747 PMCid:PMC7606521 Yang N., and Yan J., 2021, New genomic approaches for enhancing maize genetic improvement, Current opinion in Plant Biology, 60: 101977. https://doi.org/10.1016/j.pbi.2020.11.002 PMid:33418269 Yang Q., Fu G., Wu Z., Li L., Zhao J., and Li Q., 2022, Chloroplast genome evolution in four montane zingiberaceae taxa in China, Frontiers in Plant Science, 12: 774482. https://doi.org/10.3389/fpls.2021.774482 PMid:35082807 PMCid:PMC8784687 Zhai W., Duan X., Zhang R., Guo C., Li L., Xu G., Shan H., Kong H., and Ren Y., 2019, Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the ranunculaceae, Molecular Phylogenetics and Evolution, 135: 12-21. https://doi.org/10.1016/j.ympev.2019.02.024 PMid:30826488 Zhang M., Kong D., and Wang H., 2023, Genomic landscape of maize domestication and breeding improvement, Seed Biology, 2: 9. https://doi.org/10.48130/SeedBio-2023-0009 Zhao Q., Chen S., and Dai S., 2013, C4 photosynthetic machinery: insights from maize chloroplast proteomics, Frontiers in Plant Science, 4: 85. https://doi.org/10.3389/fpls.2013.00085 Zhu T., Li Z., An X., Long Y., Xue X., Xie K., Ma B., Zhang D., Guan Y., Niu C., Dong Z., Hou Q., Zhao L., Wu S., Li J., Jin W., and Wan X., 2020, Normal structure and function of endothecium chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are critical for anther development in maize, Molecular Plant, 13(11): 1624-1643. https://doi.org/10.1016/j.molp.2020.09.013 PMid:32956899
RkJQdWJsaXNoZXIy MjQ4ODYzNQ==