MGG_2024v15n4

Maize Genomics and Genetics 2024, Vol.15, No.4, 160-170 http://cropscipublisher.com/index.php/mgg 169 Liu D., Cui Y.J., Li S., Bai G., Li Q., Zhao Z., Liang D., Wang C., Wang J., Shi X., Chen C., Feng G., and Liu Z., 2019, A new chloroplast DNA extraction protocol significantly improves the chloroplast genome sequence quality of foxtail millet (Setaria italica (L.) P. Beauv.), Scientific Reports, 9(1): 16227. https://doi.org/10.1038/s41598-019-52786-2 PMid:31700055 PMCid:PMC6838068 Liu F., Xu Y., Han G., Zhou L., Ali A., Zhu S., and Li X., 2016, Molecular evolution and genetic variation of G2-like transcription factor genes in maize, PLoS One, 11(8): e0161763. https://doi.org/10.1371/journal.pone.0161763 PMid:27560803 PMCid:PMC4999087 Liu J., Fernie A., and Yan J., 2019, The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement, Plant Communications, 1(1): 100010. https://doi.org/10.1016/j.xplc.2019.100010 PMid:33404535 PMCid:PMC7747985 López M., Fass M., Rivas J., Carbonell-Caballero J., Vera P., Puebla A., Defacio R., Dopazo J., Paniego N., Hopp H., and Lia V., 2021, Plastome genomics in South American maize landraces: chloroplast lineages parallel the geographic structuring of nuclear gene pools, Annals of Botany. 128(1): 115-125. https://doi.org/10.1093/aob/mcab038 PMid:33693521 PMCid:PMC8318110 Manchanda N., Snodgrass S., Ross-Ibarra J., and Hufford M., 2018, Evolution and adaptation in the maize genome, The Maize Genome, (2018): 319-332. https://doi.org/10.1007/978-3-319-97427-9_19 Matsuoka Y., Yamazaki Y., Ogihara Y., and Tsunewaki K., 2002, Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals, Molecular Biology and Evolution, 19(12): 2084-2091. https://doi.org/10.1093/oxfordjournals.molbev.a004033 PMid:12446800 Moner A., Furtado A., and Henry R., 2020, Two divergent chloroplast genome sequence clades captured in the domesticated rice gene pool may have significance for rice production, BMC Plant Biology, 20: 1-9. https://doi.org/10.1186/s12870-020-02689-6 PMid:33054735 PMCid:PMC7558744 Moreno-Letelier A., Aguirre-Liguori J., Piñero D., Vázquez-Lobo A., and Eguiarte L., 2020, The relevance of gene flow with wild relatives in understanding the domestication process, Royal Society Open Science, 7(4): 191545. https://doi.org/10.1098/rsos.191545 PMid:32431864 PMCid:PMC7211868 Orton L., Fitzek E., Feng X., Grayburn W., Mower J., Liu K., Zhang C., Duvall M., and Yin Y., 2020, Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution, Journal of Experimental Botany, 71(11): 3361-3373. https://doi.org/10.1093/jxb/eraa149 PMid:32206790 Osuna-Mascaró C., Casas R., and Perfectti F., 2018, Comparative assessment shows the reliability of chloroplast genome assembly using RNA-seq, Scientific Reports, 8(1): 17404. https://doi.org/10.1038/s41598-018-35654-3 PMid:30479362 PMCid:PMC6258696 Stitzer M., and Ross-Ibarra J., 2018, Maize domestication and gene interaction, The New Phytologist, 220(2): 395-408. https://doi.org/10.1111/nph.15350 PMid:30035321 Tanwar N., Arya S., Rookes J., Cahill D., Lenka S., and Bansal K., 2022, Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops, Critical Reviews in Biotechnology, 43: 1001-1018. https://doi.org/10.1080/07388551.2022.2092717 PMid:35815847 Udy D., Belcher S., Williams-Carrier R., Gualberto J., and Barkan A., 2012, Effects of reduced chloroplast gene copy number on chloroplast gene expression in maize, Plant Physiology, 160: 1420-1431. https://doi.org/10.1104/pp.112.204198 PMid:22977281 PMCid:PMC3490597 Wang W., and Lanfear R., 2019, Long-reads reveal that the chloroplast genome exists in two distinct versions in most plants, Genome Biology and Evolution, 11: 3372-3381. https://doi.org/10.1093/gbe/evz256 PMid:31750905 PMCid:PMC7145664 Xu G., Cao J., Wang X., Chen Q., Jin W., Li Z., and Tian F., 2019, Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte, Plant Cell, 31(9): 1990-2009. https://doi.org/10.1105/tpc.19.00111 PMid:31227559 PMCid:PMC6751114

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==