MGG_2024v15n3

Maize Genomics and Genetics 2024, Vol.15, No.3, 147-159 http://cropscipublisher.com/index.php/mgg 158 Hancks D., and Kazazian H., 2012, Active human retrotransposons: variation and disease, Current Opinion in Genetics and Development, 22(3): 191-203. https://doi.org/10.1016/j.gde.2012.02.006. PMid:22406018 PMCid:PMC3376660 Hickman A., and Dyda F., 2016, DNA transposition at work, Chemical Reviews, 116(20): 12758-12784. https://doi.org/10.1021/acs.chemrev.6b00003 PMid:27187082 PMCid:PMC6380494 Howard T., Hayward A., Tordillos A., Fragoso C., Moreno M., Tohme J., Kausch A., Mottinger J., and Dellaporta S., 2014, Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy, PLoS One, 9(1): e87053. https://doi.org/10.1371/journal.pone.0087053 PMid:24498020 PMCid:PMC3909067 Huang C., Burns K., and Boeke J., 2012, Active transposition in genomes, Annual Review of Genetics, 46: 651-675. https://doi.org/10.1146/annurev-genet-110711-155616. PMid:23145912 PMCid:PMC3612533 Huda A., and Jordan I., 2009, Epigenetic regulation of mammalian genomes by transposable elements, Annals of the New York Academy of Sciences, 1178(1): 276-284. https://doi.org/10.1111/j.1749-6632.2009.05007.x. PMid:19845643 Igolkina A., Zinkevich A., Karandasheva K., Popov A., Selifanova M., Nikolaeva D., Tkachev V., Penzar D., Nikitin D., and Buzdin,A., 2019, H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 histone tags suggest distinct regulatory evolution of open and condensed chromatin landmarks, Cells, 8(9): 1034. https://doi.org/10.3390/cells8091034. PMid:31491936 PMCid:PMC6770625 Johnson R., and Reznikoff W., 1983, DNA sequences at the ends of transposon Tn5 required for transposition, Nature, 304: 280-282. https://doi.org/10.1038/304280A0. PMid:6306482 Kawakami K., Largaespada D., and Ivics Z., 2017, Transposons as tools for functional genomics in vertebrate models, Trends in Genetics, 33(11): 784-801. https://doi.org/10.1016/j.tig.2017.07.006 PMid:28888423 PMCid:PMC5682939 Kruijsbergen I., Hontelez S., Elurbe D., Heeringen S., Huynen M., and Veenstra G., 2017, Heterochromatic histone modifications at transposons in Xenopus tropicalis embryos, Developmental Biology, 426(2): 460-471. https://doi.org/10.1016/j.ydbio.2016.08.031 PMid:27639284 PMCid:PMC5350053 Li Z., Han L., Luo, Z., and Li L., 2021, Single‐molecule long‐read sequencing reveals extensive genomic and transcriptomic variation between maize and its wild relative teosinte (Zeamays ssp. parviglumis), Molecular Ecology Resources, 22: 272-282 https://doi.org/10.1111/1755-0998.13454 PMid:34157795 Lima-Mendez G., Alvarenga D., Ross K., Hallet B., Melderen L., Varani A., and Chandler M., 2019, Toxin-antitoxin gene pairs found in Tn3 Family transposons appear to be an integral part of the transposition module, mBio, 11(2): 110-128. https://doi.org/10.1128/mBio.00452-20 PMid:32234815 PMCid:PMC7157771 Lippman Z., May B., Yordan C., Singer T., and Martienssen R., 2003, Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification, PLoS Biology, 1(3): e67. https://doi.org/10.1371/journal.pbio.0000067 PMid:14691539 PMCid:PMC300680 Mustafin R., and Khusnutdinova E., 2018, The role of transposons in epigenetic regulation of ontogenesis, Russian Journal of Developmental Biology, 49: 61-78. https://doi.org/10.1134/S1062360418020066 Percharde M., Sultana T., and Ramalho-Santos M., 2020, What doesn't kill you makes you stronger: transposons as dual players in chromatin regulation and genomic variation, BioEssays, 42(4): 1900232. Perween S., Kumar D., and Kumar A., 2020, A review on transposons and its utilization as genetic tool, International Journal of Current Microbiology and Applied Sciences, 9: 1874-1884. https://doi.org/10.20546/ijcmas.2020.902.214 Peterson P., 2005, The plant genetics discovery of the century: transposable elements in maize, early beginnings to 1990 [Zea mays L.], Maydica, 50(3): 321-338. Purugganan M., and Wessler S., 1995, Transposon signatures: species‐specific molecular markers that utilize a class of multiple‐copy nuclear DNA, Molecular Ecology, 4(2): 265-270. https://doi.org/10.1111/j.1365-294X.1995.tb00218.x PMid:7735530

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==