MGG_2024v15n3

Maize Genomics and Genetics 2024, Vol.15, No.3, 136-146 http://cropscipublisher.com/index.php/mgg 146 Wang X., Wang H., Liu S., Ferjani A., Li J., Yan J., Yang X., and Qin F., 2016, Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedling, Nature Genetics, 48: 1233-1241. https://doi.org/10.1038/ng.3636 PMid:27526320 Warburton M., Reif J., Frisch M., Bohn M., Bedoya C., Xia X., Crossa J., Franco J., Hoisington D., Pixley K., Taba S., and Melchinger A., 2008, Genetic Diversity in CIMMYT nontemperate maize germplasm: landraces open pollinated varieties and inbred lines, Crop Science, 48: 617-624. https://doi.org/10.2135/cropsci2007.02.0103 Wen W., Araus J., Shah T., Cairns J., Mahuku G., Bänziger M., Torres J., Sánchez C., and Yan J., 2011, Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement, Crop Science, 51: 2569-2581. https://doi.org/10.2135/cropsci2010.08.0465 Yadav O., Hossain F., Karjagi C., Kumar B., Zaidi P., Jat S., Chawla J., Kaul J., Hooda K., Kumar P., Yadava P., and Dhillon B., 2015, Genetic improvement of maize in India: retrospect and prospects, Agricultural Research, 4: 325-338. https://doi.org/10.1007/s40003-015-0180-8 Yu K., Wang H., Liu X., Xu C., Li Z., Xu X., Liu J., Wang Z., and Xu Y., 2020, Large-Scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources, Frontiers in Plant Science, 11: 660. https://doi.org/10.3389/fpls.2020.00660 PMid:32547580 PMCid:PMC7278714 Zhang X., Pérez-Rodríguez P., Burgueño J., Olsen M., Buckler E., Atlin G., Prasanna B., Vargas M., Vicente F., and Crossa J., 2017, Rapid cycling genomic selection in a multiparental tropical maize population, G3: Genes|Genomes|Genetics, 7: 2315-2326. https://doi.org/10.1534/g3.117.043141 PMid:28533335 PMCid:PMC5499138

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==