MGG_2024v15n3

Maize Genomics and Genetics 2024, Vol.15, No.3, 102-110 http://cropscipublisher.com/index.php/mgg 110 References Agarwal A., Yadava P., Kumar K., Singh I., Kaul T., Pattanayak A., and Agrawal P., 2018, Insights into maize genome editing via CRISPR/Cas9, Physiology and Molecular Biology of Plants, 24: 175-183. https://doi.org/10.1007/s12298-017-0502-3 Bedoya C., Dreisigacker S., Hearne S., Franco J., Mir C., Prasanna B., Taba S., Charcosset A., and Warburton M., 2017, Genetic diversity and population structure of native maize populations in Latin America and the Caribbean, PLoS One, 12(4): e0173488. https://doi.org/10.1371/journal.pone.0173488 Cherniwchan J., and Moreno-Cruz J., 2017, Maize and precolonial Africa, Journal of Development Economics, 136: 137-150. https://doi.org/10.2139/ssrn.3030545 Galani Y., Ligowe I., Kieffer M., Kamalongo D., Kambwiri A., Kuwali P., Thierfelder C., Dougill A., Gong Y., and Orfila C., 2022, Conservation agriculture affects grain and nutrient yields of maize (Zeamays L.) and can impact food and nutrition security in Sub-saharan Africa, Frontiers in Nutrition, 8(2022): 804663. Galesi L., 2021, Maize on the move: the diffusion of a tropical cultivar across Europe, Environment and History, 29(2): 211-237. Gong F., Wu X., Zhang H., Chen Y., and Wang W., 2015, Making better maize plants for sustainable grain production in a changing climate, Frontiers in Plant Science, 6(2015): 835. Jordan I., 2016, The Columbian Exchange as a source of adaptive introgression in human populations, Biology Direct, 11: 1-8. https://doi.org/10.1186/s13062-016-0121-x. Khulbe R., Pattanayak A., and Sharma D., 2020, Biofortification of maize using accelerated breeding tools, Accelerated Plant Breeding, 2020: 293-308. https://doi.org/10.1007/978-3-030-41866-3_12. McCook S., 2011, The Neo-Columbian exchange: the second conquest of the greater Caribbean, 1720-1930, Latin American Research Review, 46(S1): 11-31. Murdia L., Wadhwani R., Wadhawan N., Bajpai P., and Shekhawat S., 2016, Maize utilization in india: an overview, American Journal of Food and Nutrition, 4: 169-176. https://doi.org/10.12691/AJFN-4-6-5. Nerkar G., Devarumath S., Purankar M., Kumar A., Valarmathi R., Devarumath R., and Appunu C., 2022, Advances in crop breeding through precision genome editing, Frontiers in Genetics, 13(2022): 880195. https://doi.org/10.3389/fgene.2022.880195 Nunn N., and Qian N., 2010, The Columbian exchange: a history of disease, food, and ideas, Journal of Economic Perspectives, 24: 163-188. https://doi.org/10.1257/JEP.24.2.163. Nuss E., and Tanumihardjo S., 2010, Maize: a paramount staple crop in the context of global nutrition, Comprehensive Reviews in Food Science and Food Safety, 9(4): 417-436. Palacios-Rojas N., McCulley L., Kaeppler M., Titcomb T., Gunaratna N., Lopez-Ridaura S., and Tanumihardjo S., 2020, Mining maize diversity and improving its nutritional aspects within agro-food systems, Comprehensive Reviews in Food Science and Food Safety, 19(4): 1809-1834. https://doi.org/10.1111/1541-4337.12552. Prasanna B., Palacios-Rojas N., Hossain F., Muthusamy V., Menkir A., Dhliwayo T., Ndhlela T., Vicente F., Nair S., Vivek B., Zhang X., Olsen M., and Fan X., 2020, Molecular breeding for nutritionally enriched maize: status and prospects, Frontiers in Genetics, 10(2020): 1392. Ranum P., Peña-Rosas J., and Garcia-Casal M., 2014, Global maize production, utilization, and consumption, Annals of the New York Academy of Sciences, 1312(1): 105-112. https://doi.org/10.1111/nyas.12396 Revilla P., Alves M., Andelković V., Balconi C., Dinis I., Mendes-Moreira P., Redaelli R., Galarreta J., Patto M., Žilić S., and Malvar R., 2022, Traditional foods from maize (Zeamays L.) in Europe, Frontiers in Nutrition, 8: 683399. Sethi M., Saini D., Devi V., Kaur C., Singh,M., Singh J., Pruthi G., Kaur A., Singh A., and Chaudhary D., 2023, Unravelling the genetic framework associated with grain quality and yield-related traits in maize (Zeamays L.), Frontiers in Genetics, 14(2023): 1248697. Thudi M., Palakurthi R., Schnable J., Chitikineni A., Dreisigackr, S., Mace E., Srivastava R., Satyavathi C., Odeny D., Tiwari V., Lam H., Hong Y., Singh V., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S., Close T., Shubo W., and Varshney R., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. Wang Y., Tang Q., Pu L., Zhang H., and Li X., 2022, CRISPR-Cas technology opens a new era for the creation of novel maize germplasms, Frontiers in Plant Science, 13: 1049803. Zenda T., Liu S., Dong A., and Duan H., 2021, Advances in cereal crop genomics for resilience under climate change, Life, 11(6): 502. https://doi.org/10.3390/life11060502

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==