MGG_2024v15n2

Maize Genomics and Genetics 2024, Vol.15, No.2, 60-69 http://cropscipublisher.com/index.php/mgg 68 Devos Y., Cougnon M., Vergucht S., Bulcke R., Haesaert G., Steurbaut W., and Reheul D., 2008, Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize, Transgenic Research, 17: 1059-1077. https://doi.org/10.1007/s11248-008-9181-8 PMid:18404410 Fartyal D., Agarwal A., James D., Borphukan B., Ram B., Sheri V., Yadav R., Manna M., Varakumar P., Achary V., and Reddy M., 2018, Co-expression of P173S mutant rice EPSPS and igrA genes results in higher glyphosate tolerance in transgenic rice, Frontiers in Plant Science, 9: 144. https://doi.org/10.3389/fpls.2018.00144. PMid:29487608 PMCid:PMC5816812 Firbank L., Heard M., Woiwod I., Hawes C., Haughton A., Champion G., Scott R., Hill M., Dewar A., Squire G., May M., Brooks D., Bohan D., Daniels R., Osborne J., Roy D., Black H., Rothery P., and Perry J., 2003, An introduction to the farm‐scale evaluations of genetically modified herbicide‐tolerant crops, Journal of Applied Ecology, 40: 2-16. https://doi.org/10.1046/j.1365-2664.2003.00787.x Fu W., Zhu P., Qu M., Zhi W., Zhang Y., Li F., and Zhu S., 2021, Evaluation on reprogramed biological processes in transgenic maize varieties using transcriptomics and metabolomics, Scientific Reports, 11(1): 2050. https://doi.org/10.1038/s41598-021-81637-2 PMid:33479482 PMCid:PMC7820507 Guo J., Liu S., Jing D., He K., Zhang Y., Li M., Qi J., and Wang Z., 2022, Genotypic variation in field-grown maize eliminates trade-offs between resistance, tolerance and growth in response to high pressure from the Asian corn borer, Plant Cell and Environment, 46(10): 3072-3089. https://doi.org/10.1111/pce.14458 PMid:36207806 Hummel A., Chauhan R., Čermák T., Mutka A., Vijayaraghavan A., Boyher A., Starker C., Bart R., Voytas D., and Taylor N., 2018, Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava, Plant Biotechnology Journal, 16: 1275-1282. https://doi.org/10.1111/pbi.12868 PMid:29223136 PMCid:PMC5999311 Klümper W., and Qaim M., 2014, A meta-analysis of the impacts of genetically modified crops, PLoS One, 9(11): e111629. https://doi.org/10.1371/journal.pone.0111629 PMid:25365303 PMCid:PMC4218791 Larue C., Goley M., Shi L., Evdokimov A., Sparks O., Ellis C., Wollacott A., Rydel T., Halls C., Scoyoc B., Fu X., Nageotte J., Adio A., Zheng M., Sturman E., Garvey G., and Varagona M., 2019, Development of enzymes for robust aryloxyphenoxypropionate and synthetic auxin herbicide tolerance traits in maize and soybean crops, Pest management Science, 75(8): 2086-2094. https://doi.org/10.1002/ps.5393 PMid:30828945 Liu F., Liu Y., Zou J., Zhang L., Zheng H., Luo Y., Wang X., and Wang L., 2023, Molecular characterization and efficacy evaluation of transgenic maize harboring cry2Ab-vip3A-cp4epsps for Insect resistance and herbicide tolerance, Plants, 12(3): 612. https://doi.org/10.3390/plants12030612 PMid:36771697 PMCid:PMC9919038 Perry E., Ciliberto F., Hennessy D., and Moschini G., 2016, Genetically engineered crops and pesticide use in U.S. maize and soybeans, Science Advances, 2(8): e1600850. https://doi.org/10.1126/sciadv.1600850 PMid:27652335 PMCid:PMC5020710 Rizzo G., Monzon J., Tenorio F., Howard R., Cassman K., and Grassini P., 2022, Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments, Proceedings of the National Academy of Sciences of the United States of America, 119(4): e2113629119. https://doi.org/10.1073/pnas.2113629119 PMid:35042796 PMCid:PMC8795556 Sony S., Kaul T., Motelb K., Thangaraj A., Bharti J., Kaul R., Verma R., and Nehra, M., 2023, CRISPR/Cas9‐mediated homology donor repair base editing confers glyphosate resistance to rice (Oryza sativa L.), Frontiers in Plant Science, 14: 1122926. https://doi.org/10.3389/fpls.2023.1122926 PMid:36959937 PMCid:PMC10027715 Wang Z., Wan L., Xin Q., Zhang X., Song Y., Wang P., Hong D., Fan Z., and Yang G., 2021, Optimising glyphosate tolerance in rapeseed (Brassica napus L.) by CRISPR/Cas9-based geminiviral donor DNA replicon system with Csy4-based single-guide RNA processing, Journal of Experimental Botany, 72(13): 4796-4808. https://doi.org/10.1093/jxb/erab167. PMid:33872346 Wen L., Zhong J., Cui Y., Duan Z., Zhou F., Li C., Ma W., Yin C., Chen H., and Lin, Y., 2021, Coexpression of I. variabilis-EPSPS* and WBceGO-B3S1 genes contributes to high glyphosate tolerance and low glyphosate residues in transgenic rice, Journal of Agricultural and Food Chemistry, 69(26): 7388–7398. https://doi.org/10.1021/acs.jafc.1c00880. PMid:33909432

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==