MGG_2024v15n2

Maize Genomics and Genetics 2024, Vol.15, No.2, 49-59 http://cropscipublisher.com/index.php/mgg 59 Khan M.H., Lone A., and Wani S.H., 2012, Genetic Engineering for Crop Improvement, INROADS-An International Journal of Jaipur National University, 1: 157-165. Lemaux P., 2008, Genetically engineered plants and foods: a scientist's analysis of the issues (part II), Annual Review of Plant Biology, 60: 511-559. https://doi.org/10.1146/annurev.arplant.043008.092013 PMid:19400729 Lorenzo C.D., Debray K., Herwegh D., Develtere W., Impens L., Schaumont D., Vandeputte W., Aesaert S., Coussens G., De Boe Y., Demuynck K., Van Hautegem T., Pauwels L., Jacobs T.B., Ruttink T., Nelissen H., and Inzé D., 2022, BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize, The Plant Cell, 35(1): 218-238. https://doi.org/10.1101/2022.05.02.490346 Masuka B., Magorokosho C., Olsen M., Atlin G., Bänziger, M., Pixley K., Vivek B., Labuschagne M., Matemba-Mutasa R., Burgueño J., Macrobert, J., Prasanna B., Das B., Makumbi D., Tarekegne A., Crossa J., Zaman-Allah M., Biljon A., and Cairns J., 2017, Gains in Maize genetic improvement in eastern and southern Africa: II. CIMMYT open-pollinated variety breeding pipeline, Crop Science, 57: 180-191. https://doi.org/10.2135/cropsci2016.05.0343 Morris M., Dreher K., Ribaut J., and Khairallah M., 2003, Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection, Molecular Breeding, 11: 235-247. https://doi.org/10.1023/A:1022872604743 Mwamahonje A., and Mrosso L., 2016, Prospects of genetic modified maize crop in Africa, African Journal of Biotechnology, 15: 571-579. https://doi.org/10.5897/AJB2015.15098 Rosa T., Carvalho I., Hutra D.J., Bradebon L.C., Sarturi M.V.D.R., Gonzalez da Rosa J.A., and Szareski V.J., 2021, Maize breeding for abiotic stress tolerance: an alternative to face climate changes, Agronomy Science and Biotechnology, 6: 1-13. https://doi.org/10.33158/ASB.r119.v6.2020 Shou H., 2003, Crop improvement through genetic engineering: development of transformation technologies and production of stress tolerant transgenic crops. Dissertation, Iowa State University, Supervisor: Knapp A., pp.25-27. Tandzi L. N., Mutengwa C., Ngonkeu E., Woin N., and Gracen V., 2017, Breeding for quality protein maize (QPM) varieties: a review, Agronomy, 7: 80. https://doi.org/10.3390/agronomy7040080 Wang B.B., Lin Z.C., Li X., Zhao Y.P., Zhao B.B., Wu G.X., Ma X.J., Wang H., Xie Y.R., Li Q.Q., Song G.S., Kong D.X., Zheng Z.G., Wei H.B., Shen R.X., Wu H., Chen C.X., Meng Z.D., Wang T.Y., Li Y., Li X.H., Chen Y.H., Lai J.S., Hufford M.B., Ross-Ibarra J., He H., and Wang H.Y., 2020, Genome-wide selection and genetic improvement during modern maize breeding, Nat. Genet., 52: 565-571. https://doi.org/10.1038/s41588-020-0616-3 PMid:32341525 Wilkes G., 2007, Urgent notice to all maize researchers: disappearance and extinction of the last wild teosinte population is more than half completed, Maydica, 52: 49-58. Wisniewski J., Frangne N., Massonneau A., and Dumas C., 2002, Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy, Biochimie, 84(11): 1095-1103. https://doi.org/10.1016/S0300-9084(02)00014-7 PMid:12595137 Yadava P., Abhishek A., Singh R., Singh, I., Kaul T., Pattanayak A., and Agrawal P., 2017, Advances in maize transformation technologies and development of transgenic maize, Frontiers in Plant Science, 7: 1949. https://doi.org/10.3389/fpls.2016.01949 PMid:28111576 PMCid:PMC5216042 Yang N., and Yan J., 2021, New genomic approaches for enhancing maize genetic improvement, Current Opinion in Plant Biology, 60: 101977. https://doi.org/10.1016/j.pbi.2020.11.002 PMid:33418269

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==