LGG_2025v16n5

Legume Genomics and Genetics 2025, Vol.16, No.5, 234-244 http://cropscipublisher.com/index.php/lgg 241 Huo C., Zhang B., and Wang R., 2021, Research progress on plant noncoding RNAs in response to low-temperature stress, Plant Signaling & Behavior, 17(1): e2004035. https://doi.org/10.1080/15592324.2021.2004035 Imoto Y., Yoshikawa S., Horiuchi Y., Iida T., Oka T., Matsuda S., Tokuji Y., Mori M., and Kato K., 2022, Flowering Date1, a major photoperiod sensitivity gene in adzuki bean, is a soybean floral repressor E1 ortholog, Breeding Science, 72(2): 132-140. https://doi.org/10.1270/jsbbs.21051 Jha U., Bohra A., and Jha R., 2016, Breeding approaches and genomics technologies to increase crop yield under low-temperature stress, Plant Cell Reports, 36: 1-35. https://doi.org/10.1007/s00299-016-2073-0 Kidokoro S., Shinozaki K., and Yamaguchi-Shinozaki K., 2022, Transcriptional regulatory network of plant cold-stress responses, Trends in Plant Science, 27(9): 922-935. https://doi.org/10.1016/j.tplants.2022.01.008 Kiger N., and Schroeder S., 2024, SVALKA: a long noncoding cis-natural antisense RNA that plays a role in the regulation of the cold response of Arabidopsis thaliana, Non-Coding RNA, 10(6): 59. https://doi.org/10.3390/ncrna10060059 Li Y., Ma E., Yang K., Zhao B., Li Y., and Wan P., 2023, Genome-wide analysis of key gene families in RNA silencing and their responses to biotic and drought stresses in adzuki bean, BMC Genomics, 24: 195. https://doi.org/10.1186/s12864-023-09274-9 Lu Q., Xu Q., Guo F., Lv Y., Song C., Feng M., Yu J., Da Z., and Cang J., 2020, Identification and characterization of long non-coding RNAs as competing endogenous RNAs in the cold stress response of Triticum aestivum, Plant Biology, 22(4): 635-645. https://doi.org/10.1111/plb.13119 Mehrotra S., Verma S., Kumar S., Kumari S., and Mishra B., 2020, Transcriptional regulation and signalling of cold stress response in plants: an overview of current understanding, Environmental and Experimental Botany, 180: 104243. https://doi.org/10.1016/j.envexpbot.2020.104243 Wang H.Y., Wang L., Yang M.D., Song Q.R., Guo Y., and Hong H.B., 2025, Unveiling drought tolerance mechanisms in soybean seed germination: new insights from physiological and molecular perspectives, Molecular Plant Breeding, 16(1): 63-72. https://doi.org/10.5376/mpb.2025.16.0007 Wang X.M., Qi Y.X., Sun G.H., Zhang S., Li W., and Wang Y.P., 2024a, Improving soybean breeding efficiency using marker-assisted selection, Molecular Plant Breeding, 15(5): 259-268. https://doi.org/10.5376/mpb.2024.15.0025 Wang P., Dai L., Ai J., Wang Y., and Ren F., 2019, Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine, Scientific Reports, 9: 6638. https://doi.org/10.1038/s41598-019-43269-5 Wang Y., Wang J., Sarwar R., Zhang W., Geng R., Zhu K., and Tan X., 2024b, Research progress on the physiological response and molecular mechanism of cold response in plants, Frontiers in Plant Science, 15: 1334913. https://doi.org/10.3389/fpls.2024.1334913 Wei X., Liu S., Sun C., Xie G., and Wang L., 2021, Convergence and divergence: signal perception and transduction mechanisms of cold stress in Arabidopsis and rice, Plants, 10(9): 1864. https://doi.org/10.3390/plants10091864 Xiang H., Liang X., Wang S., Wang X., He N., Dong X., Wang D., Chen S., Song Q., Liu Y., Wang Q., and Li W., 2024, Foliar spraying exogenous ABA resists chilling stress on adzuki beans (Vigna angularis), PLoS ONE, 19(9): e0304628. https://doi.org/10.1371/journal.pone.0304628 Yin L., Liu S., Sun W., Ke X., and Zuo Y., 2023, Genome-wide identification of glutamate receptor genes in adzuki bean and the roles of these genes in light and rust fungal response, Gene, 879: 147593. https://doi.org/10.1016/j.gene.2023.147593

RkJQdWJsaXNoZXIy MjQ4ODYzNA==