Legume Genomics and Genetics 2025, Vol.16, No.5, 215-224 http://cropscipublisher.com/index.php/lgg 223 Kuang Y., Yu H., Qi F., Zhou X., Li X., and Zhou H., 2024, Developing herbicide-resistant crops through genome editing technologies: a review, Crop Protection, 183: 106745. https://doi.org/10.1016/j.cropro.2024.106745 Lema M., 2019, Regulatory aspects of gene editing in Argentina, Transgenic Research, 28: 147-150. https://doi.org/10.1007/s11248-019-00145-2 Lema M., 2021, Regulatory assessment of off-target changes and spurious DNA insertions in gene-edited organisms for agri-food use, Journal of Regulatory Science, 9(1): 1-15. https://doi.org/10.21423/jrs-v09i1lema McMurray L., Preston C., Vandenberg A., Mao D., Bett K., and Paull J., 2019, Induced novel psbA mutation (Ala251 to Thr) in higher plants confers resistance to PSII inhibitor metribuzin in Lens culinaris, Pest management science, 75(6): 1564-1570. https://doi.org/10.1002/ps.5328 McMurray L., Preston C., Vandenberg A., Mao D., Oldach K., Meier K., and Paull J., 2018, Development of high levels of metribuzin tolerance in lentil, Weed Science, 67: 83-90. https://doi.org/10.1017/wsc.2018.57 McMurray L., Preston C., Vandenberg A., Muñoz-Santa I., Mao D., Bett K., Michelmore S., and Paull J., 2021, Paternal leakage inheritance and a fitness cost are associated with the chloroplastic psbA gene controlled metribuzin tolerance in lentil (Lens culinaris), Euphytica, 217: 103. https://doi.org/10.1007/s10681-021-02841-9 Movahedi A., Aghaei-Dargiri S., Li H., Zhuge Q., and Sun W., 2023, CRISPR variants for gene editing in plants: biosafety risks and future directions, International Journal of Molecular Sciences, 24(22): 16241. https://doi.org/10.3390/ijms242216241 Polowick P., and Yan W., 2023, A protocol for Agrobacterium-mediated genetic transformation of Lens culinaris Medik (lentil), Plant Cell, Tissue and Organ Culture, 152: 605-618. https://doi.org/10.1007/s11240-022-02434-x Rabuma T., Moronta-Barrios F., and Craig W., 2024, Navigating biosafety regulatory frameworks for genetic engineering in Africa: a focus on genome editing and gene drive technologies, Frontiers in Bioengineering and Biotechnology, 12: 1483279. https://doi.org/10.3389/fbioe.2024.1483279 Rizwan M., Aslam M., Asghar M., Abbas G., Shah T., and Shimelis H., 2017, Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis, PLoS ONE, 12(2): e0171846. https://doi.org/10.1371/journal.pone.0171846 Roy A., Sahu P., Das C., Bhattacharyya S., Raina A., and Mondal S., 2023, Conventional and new-breeding technologies for improving disease resistance in lentil (Lens culinaris Medik), Frontiers in Plant Science, 13: 1001682. https://doi.org/10.3389/fpls.2022.1001682 Shivani Grewal S., Gill R., Virk H., and Bhardwaj R., 2022, Impact of post-emergent imazethapyr on morpho-physiological and biochemical responses in lentil (Lens culinaris Medik.), Physiology and Molecular Biology of Plants, 28: 1681-1693. https://doi.org/10.1007/s12298-022-01244-x Shivani, Kaur A., Kaur S., Grewal S., Gill R., Virk H., and Bhardwaj R., 2023, Molecular characterization of acetolactate synthase genes in lentil (Lens culinaris Medik.): a key target enzyme of imazethapyr herbicide resistance, Crop Protection, 175: 106438. https://doi.org/10.1016/j.cropro.2023.106438 Singh S., Sharma S., Gill R., and Kumar S., 2021, Induced variation for post-emergence herbicide tolerance in lentil, Mutation Breeding, Genetic Diversity and Crop Adaptation to Climate Change, 22: 220-225. https://doi.org/10.1079/9781789249095.0022 Tian S., Jiang L., Cui X., Zhang J., Guo S., Li M., Zhang H., Ren Y., Gong G., Zong M., Liu F., Chen Q., and Xu Y., 2018, Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing, Plant Cell Reports, 37: 1353-1356. https://doi.org/10.1007/s00299-018-2299-0 Wall D., 1996, Lentil (Lens culinaris) and fababean (Vicia faba) tolerance to post-emergence applications of imazethapyr, Canadian Journal of Plant Science, 76: 525-529. https://doi.org/10.4141/CJPS96-096 Wall D., and Mcmullan P., 1994, Effectiveness of several new selective herbicides in lentils (Lens culinaris), Crop Protection, 13: 553-557. https://doi.org/10.1016/0261-2194(94)90110-4 Wang X.M., Sun G.H., Xu H.D., Liu C.Y., and Wang Y.P., 2024, The impact of marker-assisted selection on soybean yield and disease resistance, Bioscience Methods, 15(6): 255-263. https://doi.org/10.5376/bm.2024.15.0026 Wang F., Xu Y., Li W., Chen Z., Wang J., Fan F., Tao Y., Jiang Y., Zhu Q., and Yang J., 2020, Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing, Crop Journal, 9(2): 305-312. https://doi.org/10.1016/j.cj.2020.06.001
RkJQdWJsaXNoZXIy MjQ4ODYzNA==