LGG_2025v16n5

Legume Genomics and Genetics 2025, Vol.16, No.5, 215-224 http://cropscipublisher.com/index.php/lgg 222 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abdelrahman M., Wei Z., Rohila J., and Zhao K., 2021, Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement, Frontiers in Plant Science, 12: 721203. https://doi.org/10.3389/fpls.2021.721203 Ahmar S., Mahmood T., Fiaz S., Mora-Poblete F., Shafique M., Chattha M., and Jung K., 2021, Advantage of nanotechnology-based genome editing system and its application in crop improvement, Frontiers in Plant Science, 12: 663849. https://doi.org/10.3389/fpls.2021.663849 Ahmar S., Saeed S., Khan M., Khan S., Mora-Poblete F., Kamran M., Faheem A., Maqsood A., Rauf M., Saleem S., Hong W., and Jung K., 2020, A revolution toward gene-editing technology and its application to crop improvement, International Journal of Molecular Sciences, 21(16): 5665. https://doi.org/10.3390/ijms21165665 Arora L., and Narula A., 2017, Gene editing and crop improvement using CRISPR-Cas9 system, Frontiers in Plant Science, 8: 1932. https://doi.org/10.3389/fpls.2017.01932 Balech R., Maalouf F., Kaur S., Jighly A., Joukhadar R., Alsamman A., Hamwieh A., Khater L., Rubiales D., and Kumar S., 2024, Identification of novel genes associated with herbicide tolerance in Lentil (Lens culinaris ssp. culinaris Medik.), Scientific Reports, 14: 10215. https://doi.org/10.1038/s41598-024-59695-z Balech R., Maalouf F., Patil S., Hejjaoui K., Khater L., Rajendran K., Rubiales D., and Kumar S., 2022, Evaluation of performance and stability of new sources for tolerance to post-emergence herbicides in lentil (Lens culinaris ssp. culinaris Medik.), Crop and Pasture Science, 73: 1264-1278. https://doi.org/10.1071/CP21810 Balech R., Maalouf F., Patil S., Rajendran K., Khater L., Rubiales D., and Kumar S., 2023, Assessing the stability of herbicide-tolerant lentil accessions (Lens culinaris Medik.) under diverse environments, Plants, 12(4): 854. https://doi.org/10.3390/plants12040854 Baloğlu M., Altunoğlu Y., Baloglu P., Yildiz A., Türkölmez N., and Çiftçi Y., 2022, Gene-editing technologies and applications in legumes: progress, evolution, and future prospects, Frontiers in Genetics, 13: 859437. https://doi.org/10.3389/fgene.2022.859437 Cao D., Xue Y.G., Tang X.F., Sun J.Q., Luan X.Y., Liu Q., Zhu Z.F., He W.J., and Liu X.L., 2024, Identification and application of yield-related QTLs in soybean based on GWAS, Molecular Plant Breeding, 15(6): 371-378. http://dx.doi.org/10.5376/mpb.2024.15.0035 Custers R., Casacuberta J., Eriksson D., Sági L., and Schiemann J., 2019, Genetic alterations that do or do not occur naturally; consequences for genome edited organisms in the context of regulatory oversight, Frontiers in Bioengineering and Biotechnology, 6: 213. https://doi.org/10.3389/fbioe.2018.00213 Dong H., Huang Y., and Wang K., 2021, The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing, Genes, 12(6): 912. https://doi.org/10.3390/genes12060912 Eckerstorfer M., Dolezel M., Heissenberger A., Miklau M., Reichenbecher W., Steinbrecher R., and Waßmann F., 2019, An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs), Frontiers in Bioengineering and Biotechnology, 7: 31. https://doi.org/10.3389/fbioe.2019.00031 El-Mounadi K., Morales-Floriano M., and Garcia-Ruiz H., 2020, Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9, Frontiers in Plant Science, 11: 56. https://doi.org/10.3389/fpls.2020.00056 Fedoruk L., and Shirtliffe S., 2011, Herbicide choice and timing for weed control in imidazolinone-resistant lentil, Cambridge University Press, 25: 620-625. https://doi.org/10.1614/WT-D-11-00079.1 Gaines T., Duke S., Morran S., Rigon C., Tranel P., Küpper A., and Dayan F., 2020, Mechanisms of evolved herbicide resistance, The Journal of Biological Chemistry, 295: 10307-10330. https://doi.org/10.1074/jbc.rev120.013572 Han H., Pang J., and Soh B., 2020, Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing, Journal of Molecular Medicine, 98: 615-632. https://doi.org/10.1007/s00109-020-01893-z Hussain A., Ding X., Alariqi M., Manghwar H., Hui F., Li Y., Cheng J., Wu C., Cao J., and Jin S., 2021, Herbicide resistance: another hot agronomic trait for plant genome editing, Plants, 10(4): 621. https://doi.org/10.3390/plants10040621 Kalidasan V., and Das K., 2021, Is malaysia ready for human gene editing: a regulatory, biosafety and biosecurity perspective, Frontiers in Bioengineering and Biotechnology, 9: 649203. https://doi.org/10.3389/fbioe.2021.649203

RkJQdWJsaXNoZXIy MjQ4ODYzNA==