Legume Genomics and Genetics 2025, Vol.16, No.5, 204-214 http://cropscipublisher.com/index.php/lgg 213 Dong B., Wang Q., Zhou D., Wang Y., Miao Y., Zhong S., Fang Q., Yang L., Xiao Z., and Zhao H., 2023, Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid, Horticultural Plant Journal, 10(2): 573-585. https://doi.org/10.1016/j.hpj.2022.11.007 Feng X., Li C., He F., Xu Y., Li L., Wang X., Chen Q., and Li F., 2022, Genome-wide identification of expansin genes in wild soybean (Glycine soja) and functional characterization of Expansin B1 (GsEXPB1) in soybean hair root, International Journal of Molecular Sciences, 23(10): 5407. https://doi.org/10.3390/ijms23105407 Feng X., Xu Y., Peng L., Yu X., Zhao Q., Feng S., Zhao Z., Li F., and Hu B., 2019, TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana, Journal of Plant physiology, 240: 153004. https://doi.org/10.1016/j.jplph.2019.153004 Giordano W., and Hirsch A., 2004, The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium meliloti interaction, Molecular Plant-Microbe Interactions, 17(6): 613-622. https://doi.org/10.1094/MPMI.2004.17.6.613 Han Y., Li A., Li F., Zhao M., and Wang W., 2012, Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation, Plant Physiology and Biochemistry, 54: 49-58. https://doi.org/10.1016/j.plaphy.2012.02.007 Huang L., and Schiefelbein J., 2015, Conserved gene expression programs in developing roots from diverse plants, Plant Cell, 27: 2119-2132. https://doi.org/10.1105/tpc.15.00328 Jean-Baptiste K., McFaline-Figueroa J., Alexandre C., Dorrity M., Saunders L., Bubb K., Trapnell C., Fields S., Queitsch C., and Cuperus J., 2019, Dynamics of gene expression in single root cells of Arabidopsis thaliana, The Plant Cell, 31: 993-1011. https://doi.org/10.1105/tpc.18.00785 Kong Y., Wang B., Du H., Li W., Li X., and Zhang C., 2019, GmEXLB1, a soybean expansin-like B gene, alters root architecture to improve phosphorus acquisition in Arabidopsis, Frontiers in Plant Science, 10: 808. https://doi.org/10.3389/fpls.2019.00808 Kuluev B., Avalbaev A., Mikhaylova E., Nikonorov Y., Berezhneva Z., and Chemeris A., 2016, Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response, Journal of Plant Physiology, 206: 1-12. https://doi.org/10.1016/j.jplph.2016.09.001 Li M., Liu T., Cao R., Cao Q., Tong W., and Weining S., 2023, Evolution and expression of the expansin genes in emmer wheat, International Journal of Molecular Sciences, 24(18): 14120. https://doi.org/10.3390/ijms241814120 Li X., Tan Z., Zeng R., and Liao H., 2015, GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development, Plant Physiology, 169: 2640-2653. https://doi.org/10.1104/pp.15.01029 Li X., Walk T., and Liao H., 2014, Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment, Applied Microbiology and Biotechnology, 98: 2805-2817. https://doi.org/10.1007/s00253-013-5240-z Li Y., Darley C., Ongaro V., Fleming A., Schipper O., Baldauf S., and McQueen-Mason S., 2002, Plant expansins are a complex multigene family with an ancient evolutionary origin, Plant Physiology, 128: 854-864. https://doi.org/10.1104/pp.010658 Li Y., Zhang Y., Cui J., Wang X., Li M., Zhang L., and Kang J., 2024, Genome-wide identification, phylogenetic and expression analysis of expansin gene family in Medicago sativa L., International Journal of Molecular Sciences, 25(9): 4700. https://doi.org/10.3390/ijms25094700 Mergner J., Frejno M., Messerer M., Lang D., Samaras P., Wilhelm M., Mayer K., Schwechheimer C., and Kuster B., 2020, Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis, Scientific Data, 7: 334. https://doi.org/10.1038/s41597-020-00678-w Mohanty S., Arthikala M., Nanjareddy K., and Lara M., 2017, Plant-symbiont interactions: the functional role of expansins, Symbiosis, 74: 1-10. https://doi.org/10.1007/s13199-017-0501-8 Muthusamy M., Kim J., Yoon E., Kim J., and Lee S., 2020, BrEXLB1, a Brassica rapa expansin-like b1 gene is associated with root development, drought stress response, and seed germination, Genes, 11(4): 404. https://doi.org/10.3390/genes11040404 Palovaara J., Saiga S., Wendrich J., Wendrich J., Hofland N., Schayck J., Hater F., Mutte S., Sjollema J., Boekschoten M., Hooiveld G., and Weijers D., 2017, Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo, Nature Plants, 3: 894-904. https://doi.org/10.1038/s41477-017-0035-3 Ryan P., Ó’Maoiléidigh D., Drost H., Kwaśniewska K., Gabel A., Grosse I., Graciet E., Quint M., and Wellmer F., 2015, Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation, BMC Genomics, 16: 488. https://doi.org/10.1186/s12864-015-1699-6
RkJQdWJsaXNoZXIy MjQ4ODYzNA==