Legume Genomics and Genetics 2025, Vol.16, No.3, 100-107 http://cropscipublisher.com/index.php/lgg 105 These new methods are expected to help us breed new legume varieties that are high-yielding, resistant to stress, and adaptable to climate change, ensuring food and nutrition security for humans in the future. Acknowledgments We would like to express our gratitude to the reviewers for their valuable feedback, which helped improve the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abdelrahman M., Jogaiah S., Burritt D., and Tran L., 2018, Legume genetic resources and transcriptome dynamics under abiotic stress conditions, Plant, Cell & Environment, 41(9): 1972-1983. https://doi.org/10.1111/pce.13123 Acharjee A., Kloosterman B., Visser R., and Maliepaard C., 2016, Integration of multi-omics data for prediction of phenotypic traits using random forest, BMC Bioinformatics, 17: 180. https://doi.org/10.1186/s12859-016-1043-4 Araújo S., Beebe S., Crespi M., Delbreil B., Gonzalez E., Gruber V., Lejeune-Hénaut I., Link W., Monteros M., Prats E., Rao I., Vadez V., and Patto M., 2015, Abiotic stress responses in legumes: strategies used to cope with environmental challenges, Critical Reviews in Plant Sciences, 34: 237-280. https://doi.org/10.1080/07352689.2014.898450 Arriagada O., Arévalo B., Cabeza R., Carrasco B., and Schwember A., 2022, Meta-QTL analysis for yield components in common bean (Phaseolus vulgaris L.), Plants, 12(1): 117. https://doi.org/10.3390/plants12010117 Balko C., Torres A., and Gutiérrez N., 2023, Variability in drought stress response in a panel of 100 faba bean genotypes, Frontiers in Plant Science, 14: 1236147. https://doi.org/10.3389/fpls.2023.1236147 Biswas M., Patil A., and Sunkad G., 2023, Enhancing legume cultivars through agronomy, breeding, and genetics, Agronomy, 13(4): 1035. https://doi.org/10.3390/agronomy13041035 Briscik M., Tazza G., Dillies M., Vid'acs L., and Déjean S., 2024, Supervised multiple kernel learning approaches for multi-omics data integration, BioData Mining, 17: 53. https://doi.org/10.1186/s13040-024-00406-9 Chaudhary D., Gore P., Wankhede D., Patil D., Choudhary S., Rao A., Gautam R., Singh G., and Tripathi K., 2025, Morphological variability and genetic diversity assessment of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) core collection using multivariate analysis, Genetic Resources and Crop Evolution, 72: 6027-6042. https://doi.org/10.1007/s10722-024-02299-3 Chaudhary J., Patil G., Sonah H., Deshmukh R., Vuong T., Valliyodan B., and Nguyen H., 2015, Expanding omics resources for improvement of soybean seed composition traits, Frontiers in Plant Science, 6: 1021. https://doi.org/10.3389/fpls.2015.01021 Coyne C., Kumar S., Wettberg E., Marques E., Berger J., Redden R., Ellis T., Brus J., ZablatzkáL., and Smýkal P., 2020, Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement, Legume Science, 2(2): e36. https://doi.org/10.1002/leg3.36 Divakara D., Gore P., Tripathi K., Katral A., Choudhury D., Abhishek G., Ragi S., Thippeswamy D., Muthusamy V., Sharma D., Singh R., and Bhatt K., 2024, Exploring genetic diversity of potential legume, Vigna angularis (Willd.) Ohwi and Ohashi through agro-morphological traits and SSR markers analysis, PLOS ONE, 19(12): e0312845. https://doi.org/10.1371/journal.pone.0312845 Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A., Gowda C., Mikić A., Millot D., Singh K., Tullu A., Vandenberg A., Patto M., Warkentin T., and Zong X., 2015, Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes, Critical Reviews in Plant Sciences, 34: 381-411. https://doi.org/10.1080/07352689.2014.898469 Dutta A., Trivedi A., Nath C., Gupta D., and Hazra K., 2022, A comprehensive review on grain legumes as climate-smart crops: challenges and prospects, Environmental Challenges, 7: 100479. https://doi.org/10.1016/j.envc.2022.100479 Dwivedi S., Scheben A., Edwards D., Spillane C., and Ortiz R., 2017, Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes, Frontiers in Plant Science, 8: 1461. https://doi.org/10.3389/fpls.2017.01461 Egan L., Hofmann R., Ghamkhar K., and Hoyos-Villegas V., 2021, Prospects for Trifolium improvement through germplasm characterisation and pre-breeding in New Zealand and Beyond, Frontiers in Plant Science, 12: 653191. https://doi.org/10.3389/fpls.2021.653191
RkJQdWJsaXNoZXIy MjQ4ODYzNA==