LGG_2025v16n3

Legume Genomics and Genetics 2025, Vol.16, No.3, 143-152 http://cropscipublisher.com/index.php/lgg 151 D’Agostino L., Yong-Villalobos L., Herrera-Estrella L., and Patil G., 2023, Development of high-quality nuclei isolation to study plant root–microbe interaction for single-nuclei transcriptomic sequencing in soybean, Plants, 12(13): 2466. https://doi.org/10.3390/plants12132466 Denyer T., Ma X., Klesen S., Scacchi E., Nieselt K., and Timmermans M., 2019, Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing, Developmental Cell, 48(6): 840-852. https://doi.org/10.1016/j.devcel.2019.02.022 Djordjevic M., Mohd-Radzman N., and Imin N., 2015, Small-peptide signals that control root nodule number, development, and symbiosis, Journal of Experimental Botany, 66(17): 5171-5181. https://doi.org/10.1093/jxb/erv357 Dong W., Zhu Y., Chang H., Wang C., Yang J., Shi J., Gao J., Yang W., Lan L., Wang Y., Zhang X., Dai H., Miao Y., Xu L., He Z., Song C., Wu S., Wang D., Yu N., and Wang E., 2020, An SHR–SCR module specifies legume cortical cell fate to enable nodulation, Nature, 589: 586-590. https://doi.org/10.1038/s41586-020-3016-z Ferguson B., Indrasumunar A., Hayashi S., Lin M., Lin Y., Reid D., and Gresshoff P., 2010, Molecular analysis of legume nodule development and autoregulation, Journal of Integrative Plant Biology, 52(1): 61-76. https://doi.org/10.1111/j.1744-7909.2010.00899.x Gauthier-Coles C., White R., and Mathesius U., 2019, Nodulating legumes are distinguished by a sensitivity to cytokinin in the root cortex leading to pseudonodule development, Frontiers in Plant Science, 9: 1901. https://doi.org/10.3389/fpls.2018.01901 Gautrat P., Laffont C., and Frugier F., 2020, Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector, Current Biology, 30(7): 1339-1345. https://doi.org/10.1016/j.cub.2020.01.084 Goto T., Soyano T., Liu M., Mori T., and Kawaguchi M., 2022, Auxin methylation by IAMT1, duplicated in the legume lineage, promotes root nodule development in Lotus japonicus, Proceedings of the National Academy of Sciences of the United States of America, 119(10): e2116549119. https://doi.org/10.1073/pnas.2116549119 Hazarika A., Hazarika P., and Barukial J., 2025, Single cell RNA sequencing: an emerging tool in the field of plant research, South Asian Journal of Experimental Biology, 15(1): 9-13. https://doi.org/10.38150/sajeb.15(1).p9-13 Herrbach V., Remblière C., Gough C., and Bensmihen S., 2014, Lateral root formation and patterning in Medicago truncatula, Journal of Plant Physiology, 171(3-4): 301-310. https://doi.org/10.1016/j.jplph.2013.09.006 Jovic D., Liang X., Zeng H., Lin L., Xu F., and Luo Y., 2022, Single‐cell RNA sequencing technologies and applications: a brief overview, Clinical and Translational Medicine, 12(3): e694. https://doi.org/10.1002/ctm2.694 Liao R., and Wang J., 2023, Analysis of meristems and plant regeneration at single-cell resolution, Current Opinion in Plant Biology, 74: 102378. https://doi.org/10.1016/j.pbi.2023.102378 Lin J., Roswanjaya Y., Kohlen W., Stougaard J., and Reid D., 2021, Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus, Nature Communications, 12: 6544. https://doi.org/10.1038/s41467-021-26820-9 Liu S., and Trapnell C., 2016, Single-cell transcriptome sequencing: recent advances and remaining challenges, F1000Research, 5: 182. https://doi.org/10.12688/f1000research.7223.1 Luo Z., Liu H., and Xie F., 2023, Cellular and molecular basis of symbiotic nodule development, Current Opinion in Plant Biology, 76: 102478. https://doi.org/10.1016/j.pbi.2023.102478 Rich-Griffin C., Stechemesser A., Finch J., Lucas E., Ott S., and Schäfer P., 2019, Single-cell transcriptomics: a high-resolution avenue for plant functional genomics, Trends in Plant Science, 25(2): 186-197. https://doi.org/10.1016/j.tplants.2019.10.008 Ryu K., Huang L., Kang H., and Schiefelbein J., 2019, Single-cell RNA sequencing resolves molecular relationships among individual plant cells, Plant Physiology, 179: 1444-1456. https://doi.org/10.1104/pp.18.01482 Serrano-Ron L., Cabrera J., Pérez-García P., and Moreno-Risueno M., 2021, Unraveling root development through single-cell omics and reconstruction of gene regulatory networks, Frontiers in Plant Science, 12: 661361. https://doi.org/10.3389/fpls.2021.661361 Shaw R., Tian X., and Xu J., 2020, Single-cell transcriptome analysis in plants: advances and challenges, Molecular Plant, 14(1): 115-126. https://doi.org/10.1016/j.molp.2020.10.012 Shulse C., Cole B., Ciobanu D., Lin J., Yoshinaga Y., Gouran M., Turco G., Zhu Y., O’Malley R., Brady S., and Dickel D., 2019, High-throughput single-cell transcriptome profiling of plant cell types, Cell Reports, 27: 2241-2247. https://doi.org/10.1016/j.celrep.2019.04.054

RkJQdWJsaXNoZXIy MjQ4ODYzNA==