Legume Genomics and Genetics 2025, Vol.16, No.3, 100-107 http://cropscipublisher.com/index.php/lgg 106 Gayacharan, Parida S., Mondal N., Yadav R., Vishwakarma H., and Rana J., 2023, Mining legume germplasm for genetic gains: an Indian perspective, Frontiers in Genetics, 14: 996828. https://doi.org/10.3389/fgene.2023.996828 Gore P., Gupta V., Singh R., Tripathi K., Kumar R., Kumari G., Madhavan L., Dikshit H., Venkateswaran K., Pandey A., Singh N., Bhat K., Nair R., and Pratap A., 2022, Insights into the genetic diversity of an underutilized Indian legume, Vigna stipulacea (Lam.) Kuntz., using morphological traits and microsatellite markers, PLoS ONE, 17(1): e0262634. https://doi.org/10.1371/journal.pone.0262634 Hu H., Campbell M., Yeats T., Zheng X., Runcie D., Covarrubias-Pazaran G., Broeckling C., Yao L., Caffe‐Treml M., Gutiérrez L., Smith K., Tanaka J., Hoekenga O., Sorrells M., Gore M., and Jannink J., 2021, Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations, Theoretical and Applied Genetics, 134: 4043-4054. https://doi.org/10.1007/s00122-021-03946-4 Jan S., Rather I., Sofi P., Wani M., Sheikh F., Bhat M., and Mir R., 2021, Characterization of common bean (Phaseolus vulgaris L.) germplasm for morphological and seed nutrient traits from Western Himalayas, Legume Science, 3(2): e86. https://doi.org/10.1002/leg3.86 Jha U., Shafi S., Tallury S., Nayyar H., Ciampitti I., Siddique K., and Prasad P., 2025, Differential physiological and yield responses of selected mung bean (Vigna radiata (L.) R. Wilczek) genotypes to various high-temperature stress regimes, Scientific Reports, 15: 1034. https://doi.org/10.1038/s41598-024-84615-6 Jha U., Sharma K., Nayyar H., Parida S., and Siddique K., 2022, Breeding and genomics interventions for developing ascochyta blight resistant grain legumes, International Journal of Molecular Sciences, 23(4): 2217. https://doi.org/10.3390/ijms23042217 Leitão S., Dinis M., Veloso M., Šatović Z., and Patto M., 2017, Establishing the bases for introducing the unexplored portuguese common bean germplasm into the breeding world, Frontiers in Plant Science, 8: 1296. https://doi.org/10.3389/fpls.2017.01296 Nawaz M., Lin X., Chan T., Ham J., Shin T., Ercişli S., Golokhvast K., Lam H., and Chung G., 2020, Korean wild soybeans (Glycine soja Sieb & Zucc.): geographic distribution and germplasm conservation, Agronomy, 10(2): 214. https://doi.org/10.3390/agronomy10020214 Ohm H., Åstrand J., Ceplitis A., Bengtsson D., Hammenhag C., Chawade A., and Grimberg Å., 2024, Novel SNP markers for flowering and seed quality traits in faba bean (Vicia faba L.): characterization and GWAS of a diversity panel, Frontiers in Plant Science, 15: 1348014. https://doi.org/10.3389/fpls.2024.1348014 Papastylianou P., Vlachostergios D., Dordas C., Tigka E., Papakaloudis P., Kargiotidou A., Pratsinakis E., Koskosidis A., Pankou C., Kousta A., Mylonas I., Tani E., Abraham E., Karatassiou M., and Kostoula S., 2021, Genotype X environment interaction analysis of faba bean (Vicia faba L.) for biomass and seed yield across different environments, Sustainability, 13(5): 2586. https://doi.org/10.3390/SU13052586 Pratap A., Das A., Kumar S., and Gupta S., 2021, Current perspectives on introgression breeding in food legumes, Frontiers in Plant Science, 11: 589189. https://doi.org/10.3389/fpls.2020.589189 Rajpal V., Singh A., Kathpalia R., Thakur R., Khan M., Pandey A., Hamurcu M., and Raina S., 2023, The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation, Frontiers in Plant Science, 14: 1127239. https://doi.org/10.3389/fpls.2023.1127239 Rubiales D., 2023, Plant breeding is needed to meet agroecological requirements: legume crops as a case study, Outlook on Agriculture, 52: 294-302. https://doi.org/10.1177/00307270231195641 Sharma S., Upadhyaya H., Varshney R., and Gowda C., 2013, Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes, Frontiers in Plant Science, 4: 309. https://doi.org/10.3389/fpls.2013.00309 Singh G., Gudi S., Amandeep, Upadhyay P., Shekhawat P., Nayak G., Goyal L., Kumar D., Kumar P., Kamboj A., Thada A., Shekhar S., Koli G., Dp M., Halladakeri P., Kaur R., Kumar S, Saini P., Singh I., and Ayoubi H., 2022, Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes, Frontiers in Plant Science, 13: 1035878. https://doi.org/10.3389/fpls.2022.1035878 Singh V., Chaudhary P., Taunk J., Singh C., Singh D., Tomar R., Aski M., Konjengbam N., Raje R., Singh S., Sengar R., Yadav R., and Pal M., 2021, Fab advances in Fabaceae for abiotic stress resilience: from ‘Omics’ to artificial intelligence, International Journal of Molecular Sciences, 22(19): 10535. https://doi.org/10.3390/ijms221910535 Smýkal P., Coyne C., Ambrose M., Maxted N., Schaefer H., Blair M., Berger J., Greene S., Nelson M., Besharat N., VymyslickýT., Toker C., Saxena R., Roorkiwal M., Pandey M., Hu J., Li Y., Wang L., Guo Y., Qiu L., Redden R., and Varshney R., 2015, Legume crops phylogeny and genetic diversity for science and breeding, Critical Reviews in Plant Sciences, 34: 104-143. https://doi.org/10.1080/07352689.2014.897904 Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., Das R., Bhattacharyya D., Richards C., Coyne C., and Pirintsos S., 2017, Genomic diversity and macroecology of the crop wild relatives of domesticated pea, Scientific Reports, 7: 17384. https://doi.org/10.1038/s41598-017-17623-4
RkJQdWJsaXNoZXIy MjQ4ODYzNA==