Legume Genomics and Genetics 2025, Vol.16, No.2, 81-90 http://cropscipublisher.com/index.php/lgg 89 He C., Gao H., Wang H., Guo Y., He M., Peng Y., and Wang X., 2020, GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean, Molecular Plant, 14(3): 488-502. https://doi.org/10.1016/j.molp.2020.12.015 Isidra-Arellano M., Pozas-Rodriguez E., Del Rocío Reyero-Saavedra M., Arroyo-Canales J., Ferrer-Orgaz S., Del Socorro Sánchez-Correa M., Cárdenas L., Covarrubias A., and Valdés-López O., 2020, Inhibition of legume nodulation by Pi deficiency is dependent on the autoregulation of nodulation (AON) pathway, The Plant Journal, 103(3): 1125-1139. https://doi.org/10.1111/tpj.14789 Kidaj D., Krysa M., Suśniak K., Matys J., Komaniecka I., and Sroka-Bartnicka A., 2020, Biological activity of Nod factors, Acta biochimica Polonica, 67(4): 435-440. https://doi.org/10.18388/abp.2020_5353 Kolapo A., Ojo T., Khumalo N., Elhindi K., Kassem H., and Filusi O., 2025, Enhancing land nutrient through rhizobia biofertilization: modeling the joint effects of rhizobium inoculants and improved soybean varieties on soybean productivity in North Central, Nigeria, Frontiers in Sustainable Food Systems, 9: 1509230. https://doi.org/10.3389/fsufs.2025.1509230 Krönauer C., and Radutoiu S., 2021, Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes, Current Opinion in Plant Biology, 62: 102026. https://doi.org/10.1016/j.pbi.2021.102026 Li D., Zhu Z., Deng X., Zou J., Ma C., Li C., Yin T., Liu C., Wang J., Chen Q., and Xin D., 2023, GmPBS1, a hub gene interacting with rhizobial type-III effectors NopT and NopP, regulates soybean nodulation, Agronomy, 13(5): 1242. https://doi.org/10.3390/agronomy13051242 Lin Y., Chen C., Chen W., Liu H., Xiao R., Ji H., and Li X., 2024, A comprehensive transcriptome atlas reveals the crucial role of LncRNAs in maintaining nodulation homeostasis in soybean, Advanced Science, 12(7): 2412104. https://doi.org/10.1002/advs.202412104 Lu W., Zheng Z., Kang Q., Liu H., Jia H., Yu F., Zhang Y., Han D., Zhang X., Yan X., Huo M., Wang J., Chen Q., Zhao Y., and Xin D., 2023, Detection of the type III effector induced transcription factors that regulate phytohormone content during symbiosis establishment in soybean, Physiologia Plantarum, 175(2): e13872. https://doi.org/10.1111/ppl.13872 Ma C, Ma S, Kang Q., Wang Y., Sun Y., Qi Z., Zou J., Liu C., Yang M., Xin D., Chen Q., and Wang J., 2021, QTL mapping of genes related to Nod factor signalling using recombinant inbred lines of soybean (Glycine max), Plant Breeding, 140(6): 1070-1080. https://doi.org/10.1111/pbr.12976 Ma C., Wang J., Gao Y., Dong X., Feng H., Yang M., Yu Y., Liu C., Wu X., Qi Z., Mur L., Magne K., Zou J., Hu Z., Tian Z., Su C., Ratet P., Chen Q., and Xin D., 2024, The type III effector NopL interacts with GmREM1a and GmNFR5 to promote symbiosis in soybean, Nature Communications, 15: 5852. https://doi.org/10.1038/s41467-024-50228-w Ni H., Hou X., Tian S., Liu C., Zhang G., Peng Y., Chen L., Wang J., Chen Q., and Xin D., 2024, Insights into the early steps of the symbiotic interaction between soybean (Glycine max) and Sinorhizobium fredii symbiosis using transcriptome, small RNA, and degradome sequencing, Journal of Agricultural and Food Chemistry, 72(30): 17084-17098. https://doi.org/10.1021/acs.jafc.4c02312 Okazaki S., Kaneko T., Sato S., and Saeki K., 2013, Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system, Proceedings of the National Academy of Sciences, 110: 17131-17136. https://doi.org/10.1073/pnas.1302360110 Ratu S., Teulet A., Miwa H., Masuda S., Nguyen H., Yasuda M., Sato S., Kaneko T., Hayashi M., Giraud E., and Okazaki S., 2021, Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling, Scientific Reports, 11: 2034. https://doi.org/10.1038/s41598-021-81598-6 Rehman N., Abbas F., Imran M., Alam I., Imran M., Ullah I., Riaz M., and Khan F., 2022a, Genome wide analysis of DWARF27 genes in soybean and functional characterization of GmD27c reveals eminent role of strigolactones in rhizobia interaction and nodulation in Glycine max, Molecular Biology Reports, 49: 5405-5417. https://doi.org/10.1007/s11033-022-07127-4 Rehman N., Ali M., Ahmad M., Liang G., and Zhao J., 2018, Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max), Microbial Pathogenesis, 114: 420-430. https://doi.org/10.1016/j.micpath.2017.11.049 Rehman N., Khan F., Imran M., Rajput S., Li Y., Ullah I., Akhtar R., Imran M., Al-Huqail A., Askary A., Khalifa A., and Azhar M., 2022b, Knockdown of GmD53a confers strigolactones mediated rhizobia interaction and promotes nodulation in soybean, PeerJ, 10: e12815. https://doi.org/10.7717/peerj.12815 Shi Y., Zhang Z., Wen Y., Yu G., Zou J., Huang S., Wang J., Zhu J., Wang J., Chen L., Li J., Ma C., Zhu R., Liu X., Li Q., Liu H., Zhu Y., Guo M., Sun Z., Han L., Jiang H., Wu X., Wang N., Zhang W., Yin Z., Li C., Hu Z., Qi Z., Liu C., Chen Q., and Xin D., 2020, RNA sequencing-associated study identifies GmDRR1 as positively regulating the establishment of symbiosis in soybean, Molecular Plant-Microbe Interactions, 33(6): 798-807. https://doi.org/10.1094/mpmi-01-20-0017-r
RkJQdWJsaXNoZXIy MjQ4ODYzNA==