Legume Genomics and Genetics 2025, Vol.16, No.2, 72-80 http://cropscipublisher.com/index.php/lgg 80 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 Ongu I., Olayide P., Alexandersson E., Zawedde B., and Eriksson D., 2023, Biosafety regulatory frameworks in Kenya, Nigeria, Uganda and Sweden and their potential impact on international R&D collaborations, GM Crops & Food, 14(1): 1-17. https://doi.org/10.1080/21645698.2023.2194221 Pillai S., and Raybould A., 2023, Editorial: insights in biosafety and biosecurity 2022: novel developments, current challenges, and future perspectives, Frontiers in Bioengineering and Biotechnology, 10: 1118506. https://doi.org/10.3389/fbioe.2022.1118506 Rao Y., Yang X., Pan C., Wang C., and Wang K., 2022, Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement, Frontiers in Plant Science, 13: 839001. https://doi.org/10.3389/fpls.2022.839001 Resnik D., 2024, Biosafety, biosecurity, and bioethics, Monash Bioethics Review, 42: 137-167. https://doi.org/10.1007/s40592-024-00204-3 Rosso M., Shang C., Song Q., Escamilla D., Gillenwater J., and Zhang B., 2021, Development of breeder-friendly KASP markers for low concentration of kunitz trypsin inhibitor in soybean seeds, International Journal of Molecular Sciences, 22(5): 2675. https://doi.org/10.3390/ijms22052675 Sultana M., Mazarei M., Jurat-Fuentes J., Hewezi T., Millwood R., and Stewart C., 2023, Overexpression of soybean trypsin inhibitor genes decreases defoliation by corn earworm (Helicoverpa zea) in soybean (Glycine max) and Arabidopsis thaliana, Frontiers in Plant Science, 14: 1129454. https://doi.org/10.3389/fpls.2023.1129454 Takács K., Szabó E., Nagy A., Cserhalmi Z., Falusi J., and Gelencsér É., 2022, The effect of radiofrequency heat treatment on trypsin inhibitor activity and in vitro digestibility of soybean varieties (Glycine max. (L.) Merr.), Journal of Food Science and Technology, 59: 4436-4445. https://doi.org/10.1007/s13197-022-05523-z Wang Z., Shea Z., Rosso L., Shang C., Li J., Bewick P., Li Q., Zhao B., and Zhang B., 2022, Development of molecular markers of the Kunitz trypsin inhibitor mutant alleles generated by CRISPR/Cas9-mediated mutagenesis in soybean, bioRxiv, 504807: 1-46. https://doi.org/10.1101/2022.08.22.504807 Wang Z., Shea Z., Rosso L., Shang C., Li J., Bewick P., Li Q., Zhao B., and Zhang B., 2023, Development of new mutant alleles and markers for KTI1 and KTI3 via CRISPR/Cas9-mediated mutagenesis to reduce trypsin inhibitor content and activity in soybean seeds, Frontiers in Plant Science, 14: 1111680. https://doi.org/10.3389/fpls.2023.1111680 Xu Y., Sun Y., Huang K., Li J., Zhong C., and He X., 2022, Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge plasma and its safety evaluation and application, Foods, 11(24): 4017. https://doi.org/10.3390/foods11244017 Zhang Q., Liu L., Xiao Z., Sun Y., Xi Y., Sun T., Wang J., and Wang P., 2023, Construction and functional evaluation of CRISPR/Cas9 multiple knockout vectors of the FAD2 gene family, Agronomy, 13(7): 1737. https://doi.org/10.3390/agronomy13071737 Zheng R., Zhang L., Parvin R., Su L., Chi J., Shi K., Ye F., and Huang X., 2023, Progress and perspective of CRISPR‐Cas9 technology in translational medicine, Advanced Science, 10(25): 2300195. https://doi.org/10.1002/advs.202300195
RkJQdWJsaXNoZXIy MjQ4ODYzNA==