Legume Genomics and Genetics 2025, Vol.16, No.2, 63-71 http://cropscipublisher.com/index.php/lgg 71 Rai N., Sarma B., and Rai S., 2024, Transcriptional regulation of biotic and abiotic stress responses: challenges and potential mechanism for stress tolerance and chickpea improvement, Tropical Plant Biology, 17: 83-107. https://doi.org/10.1007/s12042-024-09354-4 Razzaq M., Aleem M., Mansoor S., Khan M., Rauf S., Iqbal S., and Siddique K., 2021, Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops, International Journal of Molecular Sciences, 22(3): 1292. https://doi.org/10.3390/ijms22031292 Roorkiwal M., Bharadwaj C., Barmukh R., Dixit G., Thudi M., Gaur P., Chaturvedi S., Fikre A., Hamwieh A., Kumar S., Sachdeva S., Ojiewo C., Tar’an B., Wordofa N., Singh N., Siddique K., and Varshney R., 2020, Integrating genomics for chickpea improvement: achievements and opportunities, Theoretical and Applied Genetics, 133: 1703-1720. https://doi.org/10.1007/s00122-020-03584-2 Sen S., Chakraborty J., Ghosh P., Basu D., and Das S., 2017, Chickpea WRKY70 regulates the expression of a homeodomain-leucine zipper (HD-Zip) I transcription factor CaHDZ12, which confers abiotic stress tolerance in transgenic tobacco and chickpea, Plant and Cell Physiology, 58: 1934-1952. https://doi.org/10.1093/pcp/pcx126 Shende R., Singh R., Kumar A., and Sengar R., 2021, Genome-wide analysis of WRKY transcription factors family in chickpea (Cicer arietinumL.), Legume Research, 45(6): 700-710. https://doi.org/10.18805/LR-4352 Soorni J., Loni F., Daryani P., Amirbakhtiar N., Pourhang L., Pouralibaba H., Khoshro H., Ramandi H., and Shobbar Z., 2025, Developing resistance to Fusarium wilt in chickpea: from identifying meta‐QTLs to molecular breeding, The Plant Genome, 18(1): e70004. https://doi.org/10.1002/tpg2.70004 Tarinejad A., Alamholo M., and Azad D., 2024, A study on chickpea (Cicer arietinumL.) EST under salinity stress and development of EST-SSRs molecular markers, Genetika, 56(3): 381-399. https://doi.org/10.2298/gensr2403381t Wang S., Wu G., and Wei M., 2024, Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses, Chinese Journal of Biotechnology, 40(1): 35-52. https://doi.org/10.13345/j.cjb.230298 Wani S., Anand S., Singh B., Bohra A., and Joshi R., 2021, WRKY transcription factors and plant defense responses: latest discoveries and future prospects, Plant Cell Reports, 40: 1071-1085. https://doi.org/10.1007/s00299-021-02691-8 Waqas M., Azhar M., Rana I., Azeem F., Ali M., Nawaz M., Chung G., and Atif R., 2019, Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinumL.) reveal their role in abiotic stress-responses, Genes & Genomics, 41: 467-481. https://doi.org/10.1007/s13258-018-00780-9
RkJQdWJsaXNoZXIy MjQ4ODYzNA==