Legume Genomics and Genetics 2025, Vol.16, No.2, 63-71 http://cropscipublisher.com/index.php/lgg 70 References Borhani S., Vessal S., Bagheri A., and Shokouhifar F., 2019, Differential gene expression pattern of drought responsive transcription factors in chickpea: an expressional analysis, Journal of Plant Growth Regulation, 39: 1211-1220. https://doi.org/10.1007/s00344-019-10056-5 Chakraborty J., Ghosh P., Sen S., and Das S., 2018, Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusariumstress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen, Plant Science, 276: 250-267. https://doi.org/10.1016/j.plantsci.2018.07.014 Chakraborty J., Ghosh P., Sen S., Nandi A., and Das S., 2019, CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporumf. sp. ciceri Race1 infection, Plant Molecular Biology, 100: 411-431. https://doi.org/10.1007/s11103-019-00868-0 Chakraborty J., Sen S., Ghosh P., Jain A., and Das S., 2020, Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporumstress condition, BMC Plant Biology, 20: 319. https://doi.org/10.1186/s12870-020-02527-9 Cheng Z., Luan Y., Meng J., Sun J., Tao J., and Zhao D., 2021, WRKY transcription factor response to high-temperature stress, Plants, 10(10): 2211. https://doi.org/10.3390/plants10102211 Javed T., and Gao S., 2023, WRKY transcription factors in plant defense, Trends in Genetics, 39(10): 787-801. https://doi.org/10.1016/j.tig.2023.07.001 Jiang J., Ma S., Ye N., Jiang M., Cao J., and Zhang J., 2017, WRKY transcription factors in plant responses to stresses, Journal of Integrative Plant Biology, 59(2): 86-101. https://doi.org/10.1111/jipb.12513 Konda A., Farmer R., Soren K., P.S., S., and Setti A., 2018, Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea, Journal of Biomolecular Structure and Dynamics, 36: 2279-2291. https://doi.org/10.1080/07391102.2017.1349690 Konda A., Sabale P., Soren K., Subramaniam S., Singh P., Rathod S., Chaturvedi S., and Singh N., 2019, Systems biology approaches reveal a multi-stress responsive WRKY transcription factor and stress associated gene co-expression networks in chickpea, Current Bioinformatics, 14(7): 591-601. https://doi.org/10.2174/1574893614666190204152500 Kudapa H., Barmukh R., Garg V., Chitikineni A., Samineni S., Agarwal G., and Varshney R., 2023, Comprehensive transcriptome profiling uncovers molecular mechanisms and potential candidate genes associated with heat stress response in chickpea, International Journal of Molecular Sciences, 24(2): 1369. https://doi.org/10.3390/ijms24021369 Kumar K., Srivastava V., Purayannur S., Kaladhar V., Cheruvu P., and Verma P., 2016, WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatulaWRKY family and characterization of group-III gene(s), DNA Research, 23: 225-239. https://doi.org/10.1093/dnares/dsw010 Kumar M., Chauhan A., Yusuf M., Sanyal I., and Chauhan P., 2019, Transcriptome sequencing of chickpea (Cicer arietinumL.) genotypes for identification of drought-responsive genes under drought stress condition, Plant Molecular Biology Reporter, 37: 186-203. https://doi.org/10.1007/s11105-019-01147-4 Li S., Khoso M., Wu J., Yu B., Wagan S., and Liu L., 2024, Exploring the mechanisms of WRKY transcription factors and regulated pathways in response to abiotic stress, Plant Stress, 12: 100429. https://doi.org/10.1016/j.stress.2024.100429 Ma Z., and Hu L., 2024, WRKY transcription factor responses and tolerance to abiotic stresses in plants, International Journal of Molecular Sciences, 25(13): 6845. https://doi.org/10.3390/ijms25136845 Mashaki K., Ghomi A., Nezhad K., Yamchi A., Soltanloo H., Thudi M., and Varshney R., 2019, Transcription factors evaluation in a transcriptome analysis on chickpea (Cicer arietinumL.) under drought stress, Journal of Crop Breeding, 11(30): 133-141. https://doi.org/10.29252/jcb.11.30.133 Mohanty J., Yadav A., Narnoliya L., Thakro V., Nayyar H., Dixit G., Jha U., Prasad P., Agarwal P., and Parida S., 2024, A next-generation combinatorial genomic strategy scans genomic loci governing heat stress tolerance in chickpea, Plant, Cell & Environment, 48(4): 2706-2726. https://doi.org/10.1111/pce.15186 Naqvi R., Mahmood M., Mansoor S., Amin I., and Asif M., 2024, Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops, Frontiers in Plant Science, 14: 1273859. https://doi.org/10.3389/fpls.2023.1273859 Phukan U., Jeena G., and Shukla R., 2016, WRKY transcription factors: molecular regulation and stress responses in plants, Frontiers in Plant Science, 7: 760. https://doi.org/10.3389/fpls.2016.00760 Priyadarshini P., Sahu S., Kalwan G., Yadava Y., Nagar R., Rai V., Bharadwaj C., Gaikwad K., and Jain P., 2023, Unravelling the mechanism of Fusarium wilt resistance in chickpea seedlings using biochemical studies and expression analysis of NBS-LRR and WRKY genes, Physiological and Molecular Plant Pathology, 124: 101958. https://doi.org/10.1016/j.pmpp.2023.101958
RkJQdWJsaXNoZXIy MjQ4ODYzNA==