Legume Genomics and Genetics 2025, Vol.16, No.1, 33-43 http://cropscipublisher.com/index.php/lgg 42 Ku Y., Cheung M., Cheng S., Nadeem M., Chung G., and Lam H., 2022, Using the knowledge of post-transcriptional regulations to guide gene selections for molecular breeding in soybean, Frontiers in Plant Science, 13: 867731. https://doi.org/10.3389/fpls.2022.867731 Li C., Li Y., Li Y., Lu H., Hong H., Tian Y., Li H., Zhao T., Zhou X., Liu J., Zhou X., Jackson S., Liu B., and Qiu L., 2020, A domestication-associated gene GmPRR3b regulates circadian clock and flowering time in soybean, Molecular Plant, 13(5): 745-759. https://doi.org/10.1016/j.molp.2020.01.014 Li H., Yang Y., Zhang H., Chu S., Zhang X., Yin D., Yu D., and Zhang D., 2016, A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map, Frontiers in Plant Science, 7: 924. https://doi.org/10.3389/fpls.2016.00924 Locke A., Slattery R., and Ort D., 2018, Field‐grown soybean transcriptome shows diurnal patterns in photosynthesis‐related processes, Plant Direct, 2(12): e00099. https://doi.org/10.1002/PLD3.99 López M., Xavier A., and Rainey K., 2019, Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr), Frontiers in Plant Science, 10: 680. https://doi.org/10.3389/fpls.2019.00680 Lu L., Wei W., Li Q., Bian X., Lu X., Hu Y., Cheng T., Wang Z., Jin M., Tao J., Yin C., He S., Man W., Li W., Lai Y., Zhang W., Chen S., and Zhang J., 2021, A transcriptional regulatory module controls lipid accumulation in soybean, The New Phytologist, 231(2): 661-678. https://doi.org/10.1111/nph.17401 Ma H.L., 2024, Optimization of photosynthetic protein complex structures to improve light energy conversion efficiency, Journal of Energy Bioscience, 15(4): 255-266. http://dx.doi.org/10.5376/jeb.2024.15.0024 Mizoi J., Ohori T., Moriwaki T., Kidokoro S., Todaka D., Maruyama K., Kusakabe K., Osakabe Y., Shinozaki K., and Yamaguchi-Shinozaki K., 2012, GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression, Plant Physiology, 161(1): 346-361. https://doi.org/10.1104/pp.112.204875 Sun X., Liu M., Yang M., Lu J., Du J., Shu K., Wang X., and Yang W., 2017, Implications of terminal oxidases in the regulation of soybean photosynthetic performance under different light intensities, Acta Physiologiae Plantarum, 39: 1-10. https://doi.org/10.1007/s11738-017-2568-5 Sun Y., Wang X., Liu L., Zhang Q., Xi Y., and Wang P., 2023, Cloning and functional study of GmRPI2, which is the critical gene of photosynthesis in soybean, Breeding Science, 73(3): 290-299. https://doi.org/10.1270/jsbbs.23002 Tao J., and Han J.Q., 2024, Physiological mechanisms of photosynthesis and antioxidant system in rice under high temperature stress, Rice Genomics and Genetics, 15(1): 36-47. https://doi.org/10.5376/rgg.2024.15.0005 Wan Z., Liu Y., Guo D., Fan R., Liu Y., Xu K., Zhu J., Quan L., Lu W., Bai X., and Zhai H., 2022, CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean, Frontiers in Plant Science, 13: 1066820. https://doi.org/10.3389/fpls.2022.1066820 Wang L., Li H., He M., Dong L., Huang Z., Chen L., Nan H., Kong F., Liu B., and Zhao X., 2022a, GIGANTEA orthologs, E2 members, redundantly determine photoperiodic flowering and yield in soybean, Journal of Integrative Plant Biology, 65(1): 188-202. https://doi.org/10.1111/jipb.13398 Wang L., Yang Y., Yang Z., Li W., Hu D., Yu H., Li X., Cheng H., Kan G., Che Z., Zhang D., Zhang H., Wang H., Huang F., and Yu D., 2022b, GmFtsH25 overexpression increases soybean seed yield by enhancing photosynthesis and photosynthates, Journal of Integrative Plant Biology, 65(4): 1026-1040. https://doi.org/10.1111/jipb.13405 Wang P., Hendron R., and Kelly S., 2017, Transcriptional control of photosynthetic capacity: conservation and divergence from Arabidopsis to rice, The New Phytologist, 216(1): 32-45. https://doi.org/10.1111/nph.14682. Wang P., Wang L., Zhang L., Wu T., Sun B., Zhang J., Sapey E., Yuan S., Jiang B., Chen F., Wu C., Hou W., Sun S., Bai J., and Han T., 2022c, Genomic dissection and diurnal expression analysis reveal the essential roles of the PRR gene family in geographical adaptation of soybean, International Journal of Molecular Sciences, 23(17): 9970. https://doi.org/10.3390/ijms23179970 Yang Y., Wang L., Zhang D., Cheng H., Wang Q., Yang H., and Yu D., 2020, GWAS identifies two novel loci for photosynthetic traits related to phosphorus efficiency in soybean, Molecular Breeding, 40: 29. https://doi.org/10.1007/s11032-020-01112-0 Zhang C., Huang Y., Xiao Z., Yang H., Hao Q., Yuan S., Chen H., Chen L., Chen S., Zhou X., and Huang W., 2020a, A GATA transcription factor from soybean (Glycine max) regulates chlorophyll biosynthesis and suppresses growth in the transgenic Arabidopsis thaliana, Plants, 9(8): 1036. https://doi.org/10.3390/plants9081036
RkJQdWJsaXNoZXIy MjQ4ODYzNA==