! ! Legume Genomics and Genetics 2025, Vol.16, No.1, 1-10 http://cropscipublisher.com/index.php/lgg! ! 9! Jiang C., 2024, Genetic mechanisms of crop disease resistance: new advances in GWAS, Plant Gene and Trait, 15(1): 15-22. http://dx.doi.org/10.5376/pgt.2024.15.0003 Kim D., Lyu J., Kim J., Seo J., Choi H., Jo Y., Kim S., Eom S., Ahn J., Bae C., and Kwon S., 2022, Identification of loci governing agronomic traits and mutation hotspots via a GBS-based genome-wide association study in a soybean mutant diversity pool, International Journal of Molecular Sciences, 23(18): 10441. https://doi.org/10.3390/ijms231810441 Kim S., Tayade R., Kang B., Hahn B., Ha B., and Kim Y., 2023a, Genome-wide association studies of seven root traits in soybean (Glycine max L.) landraces, International Journal of Molecular Sciences, 24(1): 873. https://doi.org/10.3390/ijms24010873 Kim W., Kang B., Kang S., Shin S., Chowdhury S., Jeong S., Choi M., Park S., Moon J., Ryu J., and Ha B., 2023b, A genome-wide association study of protein, oil, and amino acid content in wild soybean (Glycine soja), Plants, 12(8): 1665. https://doi.org/10.3390/plants12081665 Knoch D., Meyer R., Heuermann M., Riewe D., Peleke F., Szymański J., Abbadi A., Snowdon R., and Altmann T., 2023, Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola, The Plant Journal, 117(3): 713-728. https://doi.org/10.1111/tpj.16524 Korte A., and Farlow A., 2013, The advantages and limitations of trait analysis with GWAS: a review, Plant Methods, 9: 29. https://doi.org/10.1186/1746-4811-9-29 Lemay M., Ronne M., Bélanger R., and Belzile F., 2023, k-mer-based GWAS enhances the discovery of causal variants and candidate genes in soybean, The Plant Genome, 16(4): e20374. https://doi.org/10.1002/tpg2.20374 Li S., Cao Y., Wang C., Yan C., Sun X., Zhang L., Wang W., and Song S., 2023, Genome-wide association mapping for yield-related traits in soybean (Glycine max) under well-watered and drought-stressed conditions, Frontiers in Plant Science, 14: 1265574. https://doi.org/10.3389/fpls.2023.1265574 Moellers T., Singh A., Zhang J., Brungardt J., Kabbage M., Mueller D., Grau C., Ranjan A., Smith D., Chowda-Reddy R., and Singh A., 2017, Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments, Scientific Reports, 7: 3554. https://doi.org/10.1038/s41598-017-03695-9 Mortezaei Z., and Tavallaei M., 2021, Recent innovations and in-depth aspects of post-genome wide association study (Post-GWAS) to understand the genetic basis of complex phenotypes, Heredity, 127: 485-497. https://doi.org/10.1038/s41437-021-00479-w Patel S., Patel J., Bowen K., and Koebernick J., 2023, Deciphering the genetic architecture of resistance to Corynespora cassiicola in soybean (Glycine max L.) by integrating genome-wide association mapping and RNA-Seq analysis, Frontiers in Plant Science, 14: 1255763. https://doi.org/10.3389/fpls.2023.1255763 Priyanatha C., Torkamaneh D., and Rajcan I., 2022, Genome-wide association study of soybean germplasm derived from Canadian × Chinese crosses to mine for novel alleles to improve seed yield and seed quality traits, Frontiers in Plant Science, 13: 866300. https://doi.org/10.3389/fpls.2022.866300 Rairdin A., Fotouhi F., Zhang J., Mueller D., Ganapathysubramanian B., Singh A., Dutta S., Sarkar S., and Singh A., 2022, Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean, Frontiers in Plant Science, 13: 966244. https://doi.org/10.3389/fpls.2022.966244 Rani R., Raza G., Ashfaq H., Rizwan M., Razzaq M., Waheed M., Shimelis H., Babar A., and Arif M., 2023, Genome-wide association study of soybean (Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits, Frontiers in Plant Science, 14: 1229495. https://doi.org/10.3389/fpls.2023.1229495 Ravelombola W., Qin J., Shi A., Song Q., Yuan J., Wang F., Chen P., Yan L., Feng Y., Zhao T., Meng Y., Guan K., Yang C., and Zhang M., 2021, Genome-wide association study and genomic selection for yield and related traits in soybean, PLoS ONE, 16(8): e0255761. https://doi.org/10.1371/journal.pone.0255761 Shook J., Zhang J., Jones S., Singh A., Diers B., and Singh A., 2021, Meta-GWAS for quantitative trait loci identification in soybean, G3: Genes|Genomes|Genetics, 11(7): jkab117. https://doi.org/10.1093/g3journal/jkab117 Sonah H., O'Donoughue L., Cober E., Rajcan I., and Belzile F., 2015, Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean, Plant Biotechnology Journal, 13(2): 211-221. https://doi.org/10.1111/pbi.12249 Xiao Q., Bai X., Zhang C., and He Y., 2021, Advanced high-throughput plant phenotyping techniques for genome-wide association studies: a review, Journal of Advanced Research, 35: 215-230. https://doi.org/10.1016/j.jare.2021.05.002 Xiong H., Chen Y., Pan Y., Wang J., Lu W., and Shi A., 2023, A genome-wide association study and genomic prediction for Phakopsora pachyrhizi resistance in soybean, Frontiers in Plant Science, 14: 1179357. https://doi.org/10.3389/fpls.2023.1179357
RkJQdWJsaXNoZXIy MjQ4ODYzNA==