LGG_2024v15n6

Legume Genomics and Genetics 2024, Vol.15, No.6, 315-322 http://cropscipublisher.com/index.php/lgg 321 particularly in regions identified as genetic refugia, to ensure the sustainability of this valuable crop. Furthermore, investment in agronomic practices and infrastructure is essential to improve carob cultivation and meet industrial demands. Carob holds significant promise as a versatile and sustainable resource for the future. Its adaptability to harsh environmental conditions and its diverse industrial applications make it a valuable crop for economic development and environmental sustainability. By addressing current knowledge gaps and investing in research and conservation, the full potential of carob can be harnessed to benefit both local economies and global environmental efforts. Acknowledgments I am grateful to Dr. Han for their assistance with the data analysis and helpful discussions during the course of this research. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Baumel A., Feliner N., Médail F., La Malfa S., Di Guardo M., Kharrat M., Lakhal‐Mirleau F., Frelon V., Ouahmane L., Diadema K., Sanguin H., and Viruel J., 2021, Genome‐wide footprints in the carob tree (Ceratonia siliqua) unveil a new domestication pattern of a fruit tree in the Mediterranean, Molecular Ecology, 31: 4095-4111. https://doi.org/10.1111/mec.16563 Bayer P., Valliyodan B., Hu H., Marsh J., Yuan Y., Vuong T., Patil G., Song Q., Batley J., Varshney R., Lam H., Edwards D., and Nguyen H., 2021, Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding, The Plant Genome, 15: e20109. https://doi.org/10.1002/tpg2.20109 Benito-Vázquez I., Garrido-Romero M., Hontoria-Caballo G., García-García C., Díez-Municio M., and Moreno F., 2024, Carob (Ceratonia siliqua) flour as source of bioactive compounds: production, characterization and nutraceutical value, Foods, 13(19): 3024. https://doi.org/10.3390/foods13193024 Brassesco M., Brandão T., Silva C., and Pintado M., 2021, Carob bean (Ceratonia siliqua L.): a new perspective for functional food, Trends in Food Science and Technology, 114: 310-322. https://doi.org/10.1016/J.TIFS.2021.05.037 Cavallaro V., Barbera A., Maucieri C., Gimma G., Scalisi C., and Patané C., 2016, Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model, Ecological Engineering, 95: 557-566. https://doi.org/10.1016/J.ECOLENG.2016.06.040 Chen L.J., 2024, From wild to cultivated: the domestication pathways of Asian cultivated rice (Oryza sativa L), Rice Genomics and Genetics, 15(2): 85-95. https://doi.org/10.5376/rgg.2024.15.0010 Costa-Pérez A., Ferrer M., and Calderón A., 2023, Combined effects of cytokinin and uv-c light on phenolic pattern in Ceratonia siliqua shoot cultures, Agronomy, 13(3): 621. https://doi.org/10.3390/agronomy13030621 Di Guardo M., Scollo F., Ninot A., Rovira M., Hermoso J., Distefano G., La Malfa S., and Batlle I., 2019, Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management, Tree Genetics and Genomes, 15(3): 41. https://doi.org/10.1007/s11295-019-1345-6 Farag M., El-Kersh D., Ehrlich A., Choucry M., El‐Seedi H., Frolov A., and Wessjohann L., 2019, Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process, Food Chemistry, 283: 675-687. https://doi.org/10.1016/j.foodchem.2018.12.118 Flink L., Allen R., Barnett R., Malmström H., Peters J., Eriksson J., Andersson L., Dobney K., and Larson G., 2014, Establishing the validity of domestication genes using DNA from ancient chickens, Proceedings of the National Academy of Sciences, 111: 6184-6189. https://doi.org/10.1073/pnas.1308939110 Frantz L., Schraiber J., Madsen O., Megens H., Cagan A., Bosse M., Paudel Y., Crooijmans R., Larson G., and Groenen M., 2015, Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes, Nature Genetics, 47: 1141-1148. https://doi.org/10.1038/ng.3394 Gioxari A., Amerikanou C., Nestoridi I., Gourgari E., Pratsinis H., Kalogeropoulos N., Andrikopoulos N., and Kaliora A., 2022, Carob: a sustainable opportunity for metabolic health, Foods, 11(14): 2154. https://doi.org/10.3390/foods11142154 Glazko V., 2018, Gene and genomic levels of domestication signature (review), Sel'skokhozyaistvennaya Biologiya, (2018): 659-672. https://doi.org/10.15389/agrobiology.2018.4.659eng

RkJQdWJsaXNoZXIy MjQ4ODYzNA==