LGG_2024v15n6

Legume Genomics and Genetics 2024, Vol.15, No.6, 291-302 http://cropscipublisher.com/index.php/lgg 301 Fatema M., Mamun M., Sarker U., Hossain M., Mia M., Roychowdhury R., Ercişli S., Marc R., Babalola O., and Karim M., 2023, Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential, Sustainability, 15(2): 1427. https://doi.org/10.3390/su15021427 Hassan M., Dahu N., Tong H., Qian Z., Yi Y., Yiru L., and Wang S., 2023, Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding, Frontiers in Plant Science, 14: 1215371. https://doi.org/10.3389/fpls.2023.1215371 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Manavalan L., Guttikonda S., Tran L., and Nguyen H., 2009, Physiological and molecular approaches to improve drought resistance in soybean, Plant & Cell Physiology, 50(7): 1260-1276. https://doi.org/10.1093/pcp/pcp082 Nugroho K., Kosmiatin M., Husni A., Tasma I., and Lestari P., 2020, Identification of soybean (Glycine max [L.] Merr.) mutants and improved varieties having diverse drought tolerance character using SSR marker, IOP Conference Series: Earth and Environmental Science, 482(1): 012014. https://doi.org/10.1088/1755-1315/482/1/012014 Ouyang W., Chen L., Ma J., Liu X., Chen H., Yang H., Guo W., Shan Z., Yang Z., Chen S., Zhan Y., Zhang H., Cao D., and Zhou X., 2022, Identification of quantitative trait locus and candidate genes for drought tolerance in a soybean recombinant inbred line population, International Journal of Molecular Sciences, 23(18): 10828. https://doi.org/10.3390/ijms231810828 Patil G., Do T., Vuong T., Valliyodan B., Lee J., Chaudhary J., Shannon J., and Nguyen H., 2016, Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean, Scientific Reports, 6(1): 19199. https://doi.org/10.1038/srep19199 Ren H., Jianan H., Wang X., Zhang B., Yu L., Gao H., Huilong H., Rujian S., Tian Y., Qi X., Liu Z., Wu X., and Qiu L., 2020, QTL mapping of drought tolerance traits in soybean with SLAF sequencing, Crop Journal, 8: 977-989. https://doi.org/10.1016/j.cj.2020.04.004 Ribaut J., and Ragot M., 2006, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58(2): 351-360. https://doi.org/10.1093/JXB/ERL214 Rosero A., Granda L., Berdugo-Cely J., Šamajová O., Šamaj J., and Cerkal R., 2020, A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency, Plants, 9(10): 1263. https://doi.org/10.3390/plants9101263 Sebastian S., Streit L., Stephens P., Thompson J., Hedges B., Fabrizius M., Soper J., Schmidt D., Kallem R., HindsMark A., Feng L., and Hoeck J., 2010, Context-specific marker-assisted selection for improved grain yield in elite soybean populations, Crop Science, 50: 1196-1206. https://doi.org/10.2135/CROPSCI2009.02.0078 Shaheen T., Rahman M., Riaz M., Zafar Y., and Rahman M., 2016, Soybean production and drought stress, Abiotic and Biotic Stresses in Soybean Production, 1: 177-196. https://doi.org/10.1016/B978-0-12-801536-0.00008-6 Singh L., Pierce C., Santantonio N., Steiner R., Miller D., Reich J., and Ray I., 2022, Validation of DNA marker‐assisted selection for forage biomass productivity under deficit irrigation in alfalfa, The Plant Genome, 15(1): e20195. https://doi.org/10.1002/tpg2.20195 Sreenivasa V., Lal S., Babu P., Swamy H., Yadav R., Talukdar A., and Rathod D., 2020, Inheritance and mapping of drought tolerance in soybean at seedling stage using bulked segregant analysis, Plant Genetic Resources: Characterization and Utilization, 18: 63-70. https://doi.org/10.1017/S1479262120000052 Torres A., Ávila C., Gutiérrez N., Palomino C., Moreno M., and Cubero J., 2010, Marker-assisted selection in faba bean (Vicia faba L.), Field Crops Research, 115: 243-252. https://doi.org/10.1016/J.FCR.2008.12.002 Valliyodan B., Ye H., Song L., Murphy M., Shannon J., and Nguyen H., 2016, Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans, Journal of Experimental Botany, 68: 1835-1849. https://doi.org/10.1093/jxb/erw433 Wang W., Zhou B., He J., Zhao J., Liu C., Chen X., Xing G., Chen S., Xing H., and Gai J., 2020, Comprehensive identification of drought tolerance QTL-allele and candidate gene systems in Chinese cultivated soybean population, International Journal of Molecular Sciences, 21(14): 4830. https://doi.org/10.3390/ijms21144830 Wang X., Wu Z., Zhou Q., Wang X., Song S., and Dong S., 2022, Physiological response of soybean plants to water deficit, Frontiers in Plant Science, 12: 809692. https://doi.org/10.3389/fpls.2021.809692 Xiong R., Liu S., Considine M., Siddique K., Lam H., and Chen Y., 2020, Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: a review, Physiologia Plantarum, 172(2): 405-418. https://doi.org/10.1111/ppl.13201

RkJQdWJsaXNoZXIy MjQ4ODYzNA==