LGG_2024v15n6

Legume Genomics and Genetics 2024, Vol.15, No.6, 270-279 http://cropscipublisher.com/index.php/lgg 278 Miller M., Song Q., and Li Z., 2023, Genomic selection of soybean (Glycine max) for genetic improvement of yield and seed composition in a breeding context, The Plant Genome, 16(4): e20384. https://doi.org/10.1002/tpg2.20384 Ouyang W., Chen L., Ma J., Liu X., Chen H., Yang H., Guo W., Shan Z., Yang Z., Chen S., Zhan Y., Zhang H., Cao D., and Zhou X., 2022, Identification of quantitative trait locus and candidate genes for drought tolerance in a soybean recombinant inbred line population, International Journal of Molecular Sciences, 23(18): 10828. https://doi.org/10.3390/ijms231810828 Paux E., Lafarge S., Balfourier F., Derory J., Charmet G., Alaux M., Perchet G., Bondoux M., Baret F., Barillot R., Ravel C., Sourdille P., Gouis J., and Consortium O., 2022, Breeding for economically and environmentally sustainable wheat varieties: an integrated approach from genomics to selection, Biology, 11(1): 149. https://doi.org/10.3390/biology11010149 Priyanatha C., Torkamaneh D., and Rajcan I., 2022, Genome-wide association study of soybean germplasm derived from canadian × chinese crosses to mine for novel alleles to improve seed yield and seed quality traits, Frontiers in Plant Science, 13: 866300. https://doi.org/10.3389/fpls.2022.866300 Qin J., Wang F., Zhao Q., Shi A., Zhao T., Song Q., Ravelombola W., An H., Yan L., Yang C., and Zhang M., 2022, Identification of candidate genes and genomic selection for seed protein in soybean breeding pipeline, Frontiers in Plant Science, 13: 882732. https://doi.org/10.3389/fpls.2022.882732 Rani R., Raza G., Ashfaq H., Rizwan M., Razzaq M., Waheed M., Shimelis H., Babar A., and Arif M., 2023, Genome-wide association study of soybean (Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits, Frontiers in Plant Science, 14: 1229495. https://doi.org/10.3389/fpls.2023.1229495 Ravelombola W., Qin J., Shi A., Song Q., Yuan J., Wang F., Chen P., Yan L., Feng Y., Zhao T., Meng Y., Guan K., Yang C., and Zhang M., 2021, Genome-wide association study and genomic selection for yield and related traits in soybean, PLoS One, 16(8): e0255761. https://doi.org/10.1371/journal.pone.0255761 Sandhu K., Merrick L., Sankaran S., Zhang Z., and Carter A., 2022, Prospectus of genomic selection and phenomics in cereal, legume and oilseed breeding programs, Frontiers in Genetics, 12: 829131. https://doi.org/10.3389/fgene.2021.829131 Singer W., Lee Y., Shea Z., Vieira C., Lee D., Li X., Cunicelli M., Kadam S., Khan M., Shannon G., Mian M., Nguyen H., and Zhang B., 2023, Soybean genetics, genomics, and breeding for improving nutritional value and reducing antinutritional traits in food and feed, The Plant Genome, 16(4): e20415. https://doi.org/10.1002/tpg2.20415 Sonah H., O'Donoughue L., Cober E., Rajcan I., and Belzile F., 2015, Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean, Plant Biotechnology Journal, 13(2): 211-221. https://doi.org/10.1111/pbi.12249 Stewart-Brown B., Song Q., Vaughn J., and Li Z., 2019, Genomic selection for yield and seed composition traits within an applied soybean breeding program, G3: Genes Genomes Genetics, 9: 2253-2265. https://doi.org/10.1534/g3.118.200917 Sun M., Li Y., Zheng J., Wu D., Li C., Li Z., Zang Z., Zhang Y., Fang Q., Li W., Han Y., Zhao X., and Li Y., 2022, A nuclear factor Y-B transcription factor, GmNFYB17, regulates resistance to drought stress in soybean, International Journal of Molecular Sciences, 23(13): 7242. https://doi.org/10.3390/ijms23137242 Valliyodan B., Ye H., Song L., Murphy M., Shannon J., and Nguyen H., 2016, Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans, Journal of Experimental Botany, 68: 1835-1849. https://doi.org/10.1093/jxb/erw433 Varshney R., Roorkiwal M., and Sorrells M., 2017, Genomic selection for crop improvement, Crop Science, 49: 1-12. https://doi.org/10.1007/978-3-319-63170-7 Wang J., Feng H., Jia X., Ma S., Ma C., Wang Y., Pan S., Chen Q., Xin D., and Liu C., 2023, Identifications of QTLs and candidate genes associated with Pseudomonas syringae responses in cultivated soybean (Glycine max) and wild soybean (Glycine soja), International Journal of Molecular Sciences, 24(5): 4618. https://doi.org/10.3390/ijms24054618 Wang X., Wang X., Xu Y., Hu Z., and Xu C., 2018, Genomic selection methods for crop improvement: current status and prospects, The Crop Journal, 6(4): 330-340. https://doi.org/10.1016/J.CJ.2018.03.001 Xu Y., Ma K., Zhao Y., Wang X., Zhou K., Yu G., Li C., Li P., Yang Z., Xu C., and Xu S., 2021, Genomic selection: a breakthrough technology in rice breeding, The Crop Journal, 9(3): 669-677. https://doi.org/10.1016/J.CJ.2021.03.008 Yao D., Zhou J., Zhang A., Wang J., Liu Y., Wang L., Pi W., Li Z., Yue W., Cai J., Liu H., Hao W., and Qu X., 2023, Advances in CRISPR/Cas9-based research related to soybean [Glycine max (Linn.) Merr] molecular breeding, Frontiers in Plant Science, 14: 1247707. https://doi.org/10.3389/fpls.2023.1247707

RkJQdWJsaXNoZXIy MjQ4ODYzNA==