LGG_2024v15n6

Legume Genomics and Genetics 2024, Vol.15, No.6, 270-279 http://cropscipublisher.com/index.php/lgg 277 References Anderson E., Ali L., Beavis W., Chen P., Clemente T., Diers B., Graef G., Grassini P., Hyten D., McHale L., Nelson R., Parrott W., Patil G., Stupar R., and Tilmon K., 2019, Soybean [Glycine max (L.) Merr.] breeding: history, improvement, production and future opportunities, Advances in Plant Breeding Strategies: Legumes, 7: 431-516. https://doi.org/10.1007/978-3-030-23400-3_12 Budhlakoti N., Kushwaha A., Rai A., Chaturvedi K., Kumar A., Pradhan A., Kumar U., Kumar R., Juliana P., Mishra D., and Kumar S., 2022, Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops, Frontiers in Genetics, 13: 832153. https://doi.org/10.3389/fgene.2022.832153 Contreras-Soto R., Mora F., Oliveira M., Higashi W., Scapim C., and Schuster I., 2017, A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis, PLoS One, 12(2): e0171105. https://doi.org/10.1371/journal.pone.0171105 Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., Campos G., Burgueño J., González-Camacho J., Pérez-Elizalde S., Beyene Y., Dreisigacker S., Singh R., Zhang X., Gowda M., Roorkiwal M., Rutkoski J., and Varshney R., 2017, Genomic selection in plant breeding: methods, models, and perspectives, Trends in Plant Science, 22(11): 961-975. https://doi.org/10.1016/j.tplants.2017.08.011 Dong L., Hou Z., Li H., Li Z., Fang C., Kong L., Li Y., Du H., Li T., Wang L., He M., Zhao X., Cheng Q., Kong F., and Liu B., 2022, Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity, Journal of Integrative Plant Biology, 64(10): 1866-1882. https://doi.org/10.1111/jipb.13332 Duhnen A., Gras A., Teyssedre S., Romestant M., Claustres B., Daydé J., and Mangin B., 2017, Genomic selection for yield and seed protein content in soybean: a study of breeding program data and assessment of prediction accuracy, Crop Science, 57: 1325-1337. https://doi.org/10.2135/CROPSCI2016.06.0496 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Jannink J., Lorenz A., and Iwata H., 2010. Genomic selection in plant breeding: from theory to practice, Briefings in Functional Genomics, 9(2): 166-177. https://doi.org/10.1093/bfgp/elq001 Kim S., Tayade R., Kang B., Hahn B., Ha B., and Kim Y., 2023, Genome-wide association studies of seven root traits in soybean (Glycine max L.) landraces, International Journal of Molecular Sciences, 24(1): 873. https://doi.org/10.3390/ijms24010873 Krishnappa G., Savadi S., Tyagi B., Singh S., Masthigowda M., Kumar S., Mishra C., Khan H., Krishnappa G., Govindareddy U., Singh G., and Singh G., 2021, Integrated genomic selection for rapid improvement of crops, Genomics, 113(3): 1070-1086. https://doi.org/10.1016/j.ygeno.2021.02.007 Kumar V., Vats S., Kumawat S., Bisht A., Bhatt V., Shivaraj S., Padalkar G., Goyal V., Zargar S., Gupta S., Kumawat G., Chandra S., Chalam V., Ratnaparkhe M., Gill B., Jean M., Patil G., Vuong T., Rajcan I., Deshmukh R., Belzile F., Sharma T., Nguyen H., and Sonah H., 2021, Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.), Critical Reviews in Plant Sciences, 40: 398-421. https://doi.org/10.1080/07352689.2021.1954778 Li H., Su G., Jiang L., and Bao Z., 2017, An efficient unified model for genome-wide association studies and genomic selection, Genetics, Selection, Evolution: GSE, 49: 1-8. https://doi.org/10.1186/s12711-017-0338-x Luo Z., Yu Y., Xiang J., and Li F., 2021, Genomic selection using a subset of SNPs identified by genome-wide association analysis for disease resistance traits in aquaculture species, Aquaculture, 539: 736620. https://doi.org/10.1016/J.AQUACULTURE.2021.736620 Ma Y., Reif J., Jiang Y., Wen Z., Wang D., Liu Z., Guo Y., Wei S., Wang S., Yang C., Wang H., Yang C., Lu W., Xu R., Zhou R., Wang R., Sun Z., Chen H., Zhang W., Wu J., Hu G., Liu C., Luan X., Fu Y., Guo T., Han T., Zhang M., Sun B., Zhang L., Chen W., Wu C., Sun S., Yuan B., Zhou X., Han D., Yan H., Li W., and Qiu L., 2016, Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.), Molecular Breeding, 36: 1-10. https://doi.org/10.1007/s11032-016-0504-9 Mandozai A., Moussa A., Zhang Q., Qu J., Du Y., Anwari G., Amin N., and Wang P., 2021, Genome-wide association study of root and shoot related traits in spring soybean (Glycine max L.) at seedling stages using SLAF-Seq, Frontiers in Plant Science, 12: 568995. https://doi.org/10.3389/fpls.2021.568995 Matei G., Woyann L., Milioli A., Oliveira I., Zdziarski A., Zanella R., Coelho A., Finatto T., and Benin G., 2018. Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection, Molecular Breeding, 38: 1-13. https://doi.org/10.1007/s11032-018-0872-4 Merrick L., Herr A., Sandhu K., Lozada D., and Carter A., 2022, Optimizing plant breeding programs for genomic selection, Agronomy, 12(3): 714. https://doi.org/10.20944/preprints202202.0048.v1

RkJQdWJsaXNoZXIy MjQ4ODYzNA==