LGG_2024v15n5

Legume Genomics and Genetics 2024, Vol.15, No.5, 257-269 http://cropscipublisher.com/index.php/lgg 268 Satpute G., Ratnaparkhe M., Chandra S., Kamble V., Kavishwar R., Singh A., Gupta S., DevDas R., Arya M., Singh M., Sharma M., Kumawat G., Shivakumar M., Nataraj V., Kuchlan M., Rajesh V., Srivastava M., Chitikineni A., Varshney R., and Nguyen H., 2020, Breeding and molecular approaches for evolving drought-tolerant soybeans, 2020: 83-130. https://doi.org/10.1007/978-981-15-9380-2_4 Shahriari A., Soltani Z., Tahmasebi A., and Poczai P., 2022, Integrative system biology analysis of transcriptomic responses to drought stress in soybean (Glycine max L.), Genes, 13(10): 1732. https://doi.org/10.3390/genes13101732 Shikha M., Kanika A., Rao A., Mallikarjuna M., Gupta H., and Nepolean T., 2017, Genomic selection for drought tolerance using genome-wide SNPs in maize, Frontiers in Plant Science, 8: 550. https://doi.org/10.3389/fpls.2017.00550 Silvente S., Sobolev A., and Lara M., 2012, Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress, PLoS One, 7(6): e38554. https://doi.org/10.1371/journal.pone.0038554 Sousa L., Menezes-Silva P., Lourenço L., Galmés J., Guimarães A., Silva A., Lima A., Henning L., Costa A., Silva F., and Farnese F., 2020, Improving water-use efficiency by changing hydraulic and stomatal characteristics in soybean exposed to drought: the involvement of nitric oxide, Physiologia Plantarum, 168(3): 576-589. https://doi.org/10.1111/ppl.12983 Sun M., Li Y., Zheng J., Wu D., Li C., Li Z., Zang Z., Zhang Y., Fang Q., Li W., Han Y., Zhao X., and Li Y., 2022, A nuclear factor Y-B transcription factor, GmNFYB17, regulates resistance to drought stress in soybean, International Journal of Molecular Sciences, 23(13): 7242. https://doi.org/10.3390/ijms23137242 Toum L., Pérez-Borroto L., Peña-Malavera A., Luque C., Welin B., Berenstein A., Porto D., Vojnov A., Castagnaro A., and Pardo E., 2021, Selecting drought-tolerance markers: an exploratory analysis in contrasting soybeans, 2021: 1-20. https://doi.org/10.21203/rs.3.rs-1111038/v1 Tripathi P., Rabara R., Reese R., Miller M., Rohila J., Subramanian S., Shen Q., Morandi D., Bücking H., Shulaev V., and Rushton P., 2016, A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes, BMC Genomics, 17: 1-22. https://doi.org/10.1186/s12864-016-2420-0 Tuberosa R., and Salvi S., 2006, Genomics-based approaches to improve drought tolerance of crops, Trends in Plant Science, 11(8): 405-412. https://doi.org/10.1016/J.TPLANTS.2006.06.003 Valliyodan B., Ye H., Song L., Murphy M., Shannon J., and Nguyen H., 2016, Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans, Journal of Experimental Botany, 68: 1835-1849. https://doi.org/10.1093/jxb/erw433 Wang K., Bu T., Cheng Q., Dong L., Su T., Chen Z., Kong F., Gong Z., Liu B., and Li M., 2020, Two homologous LHY pairs negatively control soybean drought tolerance by repressing the ABA responses, The New Phytologist, 229(5): 2660-2675. https://doi.org/10.1111/nph.17019. Wang N., Zhang W., Qin M., Li S., Qiao M., Liu Z., and Xiang F., 2017, Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor, Plant and Cell Physiology, 58: 1764-1776. https://doi.org/10.1093/pcp/pcx111 Wang X., Song S., Wang X., Liu J., and Dong S., 2022, Transcriptomic and metabolomic analysis of seedling-stage soybean responses to PEG-simulated drought stress, International Journal of Molecular Sciences, 23(12): 6869. https://doi.org/10.3390/ijms23126869 Wang X., Wu Z., Zhou Q., Wang X., Song S., and Dong S., 2022, Physiological response of soybean plants to water deficit, Frontiers in Plant Science, 12: 809692. https://doi.org/10.3389/fpls.2021.809692 Wei W., Liang D., Bian X., Shen M., Xiao J., Zhang W., Ma B., Lin Q., Lv J., Chen X., Chen S., and Zhang J., 2019, GmWRKY54 improves drought tolerance through activating genes in ABA and Ca2 + signaling pathways in transgenic soybean, The Plant Journal, 10: 14-49. https://doi.org/10.1111/tpj.14449 Xiong R., Liu S., Considine M., Siddique K., Lam H., and Chen Y., 2020, Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: a review, Physiologia Plantarum, 172(2): 405-418. https://doi.org/10.1111/ppl.13201 Xuan H., Huang Y., Zhou L., Deng S., Wang C., Xu J., Wang H., Zhao J., Guo N., and Xing H., 2022, Key soybean seedlings drought-responsive genes and pathways revealed by comparative transcriptome analyses of two cultivars, International Journal of Molecular Sciences, 23(5): 2893. https://doi.org/10.3390/ijms23052893 Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., and Yamaguchi-Shinozaki K., 2010, AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation, The Plant Journal, 61(4): 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==