LGG_2024v15n5

Legume Genomics and Genetics 2024, Vol.15, No.5, 257-269 http://cropscipublisher.com/index.php/lgg 267 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Aleem M., Raza M., Haider M., Atif R., Ali Z., Bhat J., and Zhao T., 2020, Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in Wild Soybean (Glycine soja Sieb. and Zucc.), Physiologia Plantarum, 172(2): 707-732. https://doi.org/10.1111/ppl.13219 Buezo J., Sanz‐Saez A., Moran J., Soba D., Aranjuelo Í., and Esteban R., 2018, Drought tolerance response of high-yielding soybean varieties to mild drought: physiological and photochemical adjustments, Physiologia Plantarum, 166(1): 88-104. https://doi.org/10.1111/ppl.12864 Cao L., Jin X., and Zhang Y., 2019, Melatonin confers drought stress tolerance in soybean (Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism, Photosynthetica, 57(3): 812-819. https://doi.org/10.32615/PS.2019.100 Castro J., Müller C., Almeida G., and Costa A., 2019, Physiological tolerance to drought under high temperature in soybean cultivars, Aust. J. Crop Sci., 13: 976-987. https://doi.org/10.21475/AJCS.19.13.06.P1767 Chen M., Wang Q., Cheng X., Xu Z., Li L., Ye X., Xia L., and Ma Y., 2007, GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants, Biochemical and Biophysical Research Communications, 353(2): 299-305. https://doi.org/10.1016/J.BBRC.2006.12.027 Dhungana S., Park J., Oh J., Kang B., Seo J., Sung J., Kim H., Shin S., Baek I., and Jung C., 2021, Quantitative trait locus mapping for drought tolerance in soybean recombinant inbred line population, Plants, 10(9): 1816. https://doi.org/10.3390/plants10091816 Dubey A., Kumar A., AbdAllah E., Hashem A., and Khan M., 2019, Growing more with less: breeding and developing drought resilient soybean to improve food security, Ecological Indicators, 105: 425-437. https://doi.org/10.1016/J.ECOLIND.2018.03.003 Fatema M., Mamun M., Sarker U., Hossain M., Mia M., Roychowdhury R., Ercişli S., Marc R., Babalola O., and Karim M., 2023, Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential, Sustainability, 15(2): 1427. https://doi.org/10.3390/su15021427 Jogaiah S., Govind S., and Tran L., 2013, Systems biology-based approaches toward understanding drought tolerance in food crops, Critical Reviews in Biotechnology, 33: 23-39. https://doi.org/10.3109/07388551.2012.659174 Kidokoro S., Watanabe K., Ohori T., Moriwaki T., Maruyama K., Mizoi J., Htwe N., Fujita Y., Sekita S., Shinozaki K., and Yamaguchi-Shinozaki K., 2015, Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression, The Plant Journal, 81(3): 505-518. https://doi.org/10.1111/tpj.12746 Li B., Liu Y., Cui X., Fu J., Zhou Y., Zheng W., Lan J., Jin L., Chen M., Ma Y., Xu Z., and Min D., 2019, Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance, Frontiers in Plant Science, 10: 549. https://doi.org/10.3389/fpls.2019.00549 Li M., Li H., Sun A., Wang L., Ren C., Liu J., and Gao X., 2022, Transcriptome analysis reveals key drought-stress-responsive genes in soybean, Frontiers in Genetics, 13: 1060529. https://doi.org/10.3389/fgene.2022.1060529 Li Y., Zhang J., Zhang J., Hao L., Hua J., Duan L., Zhang M., and Li Z., 2013, Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions, Plant biotechnology Journal, 11(6): 747-758. https://doi.org/10.1111/pbi.12066 Lu L., Dong C., Liu R., Zhou B., Wang C., and Shou H., 2018, Roles of soybean plasma membrane intrinsic protein GmPIP2;9 in drought tolerance and seed development, Frontiers in Plant Science, 9: 530. https://doi.org/10.3389/fpls.2018.00530 Manavalan L., Guttikonda S., Tran L., and Nguyen H., 2009, Physiological and molecular approaches to improve drought resistance in soybean. Plant and cell Physiology, 50(7): 1260-1276. https://doi.org/10.1093/pcp/pcp082 Patel J., and Mishra A., 2021, Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture and photosynthesis, Physiologia Plantarum, 172(2): 1030-1044. https://doi.org/10.1111/ppl.13324 Ren H., Jianan H., Wang X., Zhang B., Yu L., Gao H., Huilong H., Rujian S., Tian Y., Qi X., Liu Z., Wu X., and Qiu L., 2020, QTL mapping of drought tolerance traits in soybean with SLAF sequencing, Crop Journal, 8: 977-989. https://doi.org/10.1016/j.cj.2020.04.004

RkJQdWJsaXNoZXIy MjQ4ODYzNA==