LGG_2024v15n5

Legume Genomics and Genetics 2024, Vol.15, No.5, 244-256 http://cropscipublisher.com/index.php/lgg 256 Wang X., Wang X., Xu Y., Hu Z., and Xu C., 2018, Genomic selection methods for crop improvement: current status and prospects, The Crop Journal, 6(4): 330-340. https://doi.org/10.1016/J.CJ.2018.03.001 Yang Y., Saand M., Huang L., Abdelaal W., Zhang J., Wu Y., Li J., Sirohi M., and Wang F., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 Young N., and Udvardi M., 2009, Translating Medicago truncatula genomics to crop legumes, Current Opinion in Plant Biology, 12(2): 193-201. https://doi.org/10.1016/j.pbi.2008.11.005 Yung W., Huang C., Li M., and Lam H., 2022, Changes in epigenetic features in legumes under abiotic stresses, The Plant Genome, 16(4): e20237. https://doi.org/10.1002/tpg2.20237 Zenda T., Liu S., Dong A., Li J., Wang Y., Liu X., Wang N., and Duan H., 2021, Omics-facilitated crop improvement for climate resilience and superior nutritive value, Frontiers in Plant Science, 12: 774994. https://doi.org/10.3389/fpls.2021.774994 Zhu Z.Y., An X., Luo X.H., Chen C.L., Liu T.T., Zou L.N., and Zhu G.L., 2024, Research progress of NAC transcription factor family in plant stress resistance, Molecular Plant Breeding, 15(3): 90-99. https://doi.org/10.5376/mpb.2024.15.0011

RkJQdWJsaXNoZXIy MjQ4ODYzNA==