LGG_2024v15n5

Legume Genomics and Genetics 2024, Vol.15, No.5, 244-256 http://cropscipublisher.com/index.php/lgg 255 Rodriguez C., Carlsson G., Englund J., Flöhr A., Pelzer E., Jeuffroy M., Makowski D., and Jensen E., 2020, Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems, a meta-analysis, European Journal of Agronomy, 118: 126077. https://doi.org/10.1016/j.eja.2020.126077 Rose R., 2008, Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future, Functional Plant Biology, 35(4): 253-264. https://doi.org/10.1071/FP07297 Roy F., Boye J., and Simpson B., 2010, Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil, Food Research International, 43: 432-442. https://doi.org/10.1016/J.FOODRES.2009.09.002 Roy S., Liu W., Nandety R., Crook A., Mysore K., Pislariu C., Frugoli J., Dickstein R., and Udvardi M., 2020, Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation, Plant Cell, 32: 15-41. https://doi.org/10.1105/tpc.19.00279 Salgotra R., and Stewart C., 2022, Genetic augmentation of legume crops using genomic resources and genotyping platforms for nutritional food security, Plants, 11(14): 1866. https://doi.org/10.3390/plants11141866 Santi C., Bogusz D., and Franche C., 2013, Biological nitrogen fixation in non-legume plants, Annals of Botany, 111(5): 743-767. https://doi.org/10.1093/aob/mct048 Sindhu M., Kumar A., Yadav H., Chaudhary D., Jaiwal R., and Jaiwal P., 2019, Current advances and future directions in genetic enhancement of a climate resilient food legume crop, cowpea (Vigna unguiculata L. Walp.), Plant Cell, Tissue and Organ Culture, 139: 429-453. https://doi.org/10.1007/s11240-019-01695-3 Smýkal P., Coyne C., Ambrose M., Maxted N., Schaefer H., Blair M., Berger J., Greene S., Nelson M., Besharat N., Vymyslický T., Toker C., Saxena R., Roorkiwal M., Pandey M., Hu J., Li Y., Wang L., Guo Y., Qiu L., Redden R., and Varshney R., 2015, Legume crops phylogeny and genetic diversity for science and breeding, Critical Reviews in Plant Sciences, 34: 104-143. https://doi.org/10.1080/07352689.2014.897904 Spindel J., Begum H., Akdemir D., Virk P., Collard B., Redoña E., Atlin G., Jannink J., and McCouch S., 2015, Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines, PLoS Genetics, 11(2): e1004982. https://doi.org/10.1371/journal.pgen.1004982 Susmitha P., Kumar P., Yadav P., Sahoo S., Kaur G., Pandey M., Singh V., Tseng T., and Gangurde S., 2023, Genome-wide association study as a powerful tool for dissecting competitive traits in legumes, Frontiers in Plant Science, 14: 1123631. https://doi.org/10.3389/fpls.2023.1123631 Thoquet P., Ghérardi M., Journet E., Kereszt A., Ané J., Prosperi J., and Huguet T., 2002, The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes, BMC Plant Biology, 2: 1-13. https://doi.org/10.1186/1471-2229-2-1 Thudi M., Palakurthi R., Schnable J., Chitikineni A., Dreisigacker S., Mace E., Srivastava R., Satyavathi C., Odeny, D., Tiwari V., Lam H., Hong Y., Singh V., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S., Close T., Shubo W., and Varshney R., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351 Tiwari M., Singh B., Min D., and Jagadish S., 2022, Omics path to increasing productivity in less-studied crops under changing climate-lentil a case study, Frontiers in Plant Science, 13: 813985. https://doi.org/10.3389/fpls.2022.813985 Varshney R., 2016, Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut, Plant Science, 242: 98-107. https://doi.org/10.1016/j.plantsci.2015.09.009 Varshney R., Kudapa H., Pazhamala L., Chitikineni A., Thudi M., Bohra A., Gaur P., Janila P., Fikre A., Kimurto P., and Ellis N., 2015, Translational genomics in agriculture: some examples in grain legumes, Critical Reviews in Plant Sciences, 34: 169-194. https://doi.org/10.1080/07352689.2014.897909 Varshney R., Mohan S., Gaur P., Gangarao N., Pandey M., Pandey M., Bohra A., Sawargaonkar S., Chitikineni A., Kimurto P., Janila P., Saxena K., Fikre A., Sharma M., Rathore A., Pratap A., Tripathi S., Datta S., Chaturvedi S., Mallikarjuna N., Anuradha G., Babbar A., Choudhary A., Mhase M., Bharadwaj C., Mannur D., Harer P., Guo B., Liang X., Nadarajan N., and Gowda C., 2013, Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics, Biotechnology Advances, 31(8): 1120-1134. https://doi.org/10.1016/j.biotechadv.2013.01.001 Varshney R., Roorkiwal M., and Sorrells M., 2017, Genomic selection for crop improvement, Crop Science, 49: 1-12. https://doi.org/10.1007/978-3-319-63170-7 Varshney R., Thudi M., Pandey M., Tardieu F., Ojiewo C., Vadez V., Whitbread A., Siddique K., Nguyen H., Carberry P., and Bergvinson D., 2018, Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy, Journal of Experimental Botany, 69(13): 3293-3312. https://doi.org/10.1093/jxb/ery088

RkJQdWJsaXNoZXIy MjQ4ODYzNA==