LGG_2024v15n5

Legume Genomics and Genetics 2024, Vol.15, No.5, 244-256 http://cropscipublisher.com/index.php/lgg 254 Huang W.Z., 2024, The current situation and future of using GWAS strategies to accelerate the improvement of crop stress resistance traits, Molecular Plant Breeding, 15(2): 52-62. https://doi.org/10.5376/mpb.2024.15.0007 Jan N., Rather A., John R., Chaturvedi P., Ghatak A., Weckwerth W., Zargar S., Mir R., Khan M., and Mir R., 2022, Proteomics for abiotic stresses in legumes: present status and future directions, Critical Reviews in Biotechnology, 43: 171-190. https://doi.org/10.1080/07388551.2021.2025033 Jannink J., Lorenz A., and Iwata H., 2010, Genomic selection in plant breeding: from theory to practice, Briefings in functional genomics, 9(2): 166-177. https://doi.org/10.1093/bfgp/elq001 Jha U., Nayyar H., Parida S., Bakır M., Wettberg E., and Siddique K., 2022, Progress of genomics-driven approaches for sustaining underutilized legume crops in the post-genomic era, Frontiers in Genetics, 13: 831656. https://doi.org/10.3389/fgene.2022.831656 Kamali S., and Singh A., 2023, Genomic and transcriptomic approaches to developing abiotic stress-resilient crops, Agronomy, 13(12): 2903. https://doi.org/10.3390/agronomy13122903 Karavidas I., Ntatsi G., Vougeleka V., Karkanis A., Ntanasi T., Saitanis C., Agathokleous E., Ropokis A., Sabatino L., Tran F., Iannetta P., and Savvas D., 2022, Agronomic practices to increase the yield and quality of common bean (Phaseolus vulgaris L.): a systematic review, Agronomy, 12(2): 271. https://doi.org/10.3390/agronomy12020271 Kebede E., 2021, Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems, 5: 767998. https://doi.org/10.3389/fsufs.2021.767998 Koul B., Sharma K., Sehgal V., Yadav D., Mishra M., and Bharadwaj C., 2022, Chickpea (Cicer arietinumL.) biology and biotechnology: from domestication to biofortification and biopharming, Plants, 11(21): 2926. https://doi.org/10.3390/plants11212926 Kudapa H., Ramalingam A., Nayakoti S., Chen X., Zhuang W., Liang X., Kahl G., Edwards D., and Varshney R., 2013, Functional genomics to study stress responses in crop legumes: progress and prospects, Functional Plant Biology, 40(12): 1221-1233. https://doi.org/10.1071/FP13191 Kumar J., Gupta D., Djalović I., Kumar S., and Siddique K., 2020, Root-omics for drought tolerance in cool-season grain legumes, Physiologia Plantarum, 172(2): 629-644. https://doi.org/10.1111/ppl.13313 Libault M., and Dickstein R., 2014, Advances in functional genomics in legume, Legumes in the Omic Era, 2014: 15-39. https://doi.org/10.1007/978-1-4614-8370-0_2 López C., Alseekh S., Torralbo F., Rivas F., Fernie A., Amil-Ruiz F., and Alamillo J., 2023, Transcriptomic and metabolomic analysis reveals that symbiotic nitrogen fixation enhances drought resistance in common bean, Journal of Experimental Botany, 74(10): 3203-3219. https://doi.org/10.1093/jxb/erad083 Ma J., Olin S., Anthoni P., Rabin S., Bayer A., Nyawira S., and Arneth A., 2022, Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285), Geoscientific Model Development, 15(2): 815-839. https://doi.org/10.5194/gmd-15-815-2022 Mousavi‐Derazmahalleh M., Bayer P., Hane J., Valliyodan B., Nguyen H., Nelson M., Erskine W., Varshney R., Papa R., and Edwards D., 2018, Adapting legume crops to climate change using genomic approaches, Plant, Cell and Environment, 42: 6-19. https://doi.org/10.1111/pce.13203 O’Rourke J., Bolon Y., Bucciarelli B., and Vance C., 2014, Legume genomics: understanding biology through DNA and RNA sequencing, Annals of Botany, 113(7): 1107-1120. https://doi.org/10.1093/aob/mcu072 Pankievicz V., Irving T., Maia L., and Ané J., 2019, Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops, BMC Biology, 17(1): 99. https://doi.org/10.1186/s12915-019-0710-0 Pazhamala L., Kudapa H., Weckwerth W., Millar A., and Varshney R., 2021, Systems biology for crop improvement, The Plant Genome, 14(2): e20098. https://doi.org/10.1002/tpg2.20098 Ramalingam A., Kudapa H., Pazhamala L., Weckwerth W., and Varshney R., 2015, Proteomics and metabolomics: two emerging areas for legume improvement, Frontiers in Plant Science, 6: 1116. https://doi.org/10.3389/fpls.2015.01116 Rane J., Singh A., Kumar M., Boraiah K., Meena K., Pradhan A., and Prasad P., 2021, The adaptation and tolerance of major cereals and legumes to important abiotic stresses, International Journal of Molecular Sciences, 22(23): 12970. https://doi.org/10.3390/ijms222312970 Ravelombola W., Qin J., Shi A., Song Q., Yuan J., Wang F., Chen P., Yan L., Feng Y., Zhao T., Meng Y., Guan K., Yang C., and Zhang M., 2021, Genome-wide association study and genomic selection for yield and related traits in soybean, PLoS One, 16(8): e0255761. https://doi.org/10.1371/journal.pone.0255761

RkJQdWJsaXNoZXIy MjQ4ODYzNA==