Legume Genomics and Genetics 2024, Vol.15, No.5, 232-243 http://cropscipublisher.com/index.php/lgg 242 Huang R., Li H., Gao C., Yu W., and Zhang S., 2023, Advances in omics research on peanut response to biotic stresses, Frontiers in Plant Science, 14: 1101994. https://doi.org/10.3389/fpls.2023.1101994 Jiang H., Ren X., Chen Y., Huang L., Zhou X., Huang J., Froenicke L., Yu J., Guo B., and Liao B., 2012, Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum, Plant Genetic Resources, 11: 77-83. https://doi.org/10.1017/S1479262112000408 Jiang Y., Luo H., Yu B., Ding Y., Kang Y., Huang L., Zhou X., Liu N., Chen W., Guo J., Huai D., Lei Y., Jiang H., Yan L., and Liao B., 2021, High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus infection in peanut, Frontiers in Plant Science, 12: 745408. https://doi.org/10.3389/fpls.2021.745408 Korani W., Chu Y., Holbrook C., and Ozias‐Akins P., 2018, Insight into genes regulating postharvest aflatoxin contamination of tetraploid peanut from transcriptional profiling, Genetics, 209: 143-156. https://doi.org/10.1534/genetics.118.300478 Kottapalli K., Burow M., Burow G., Burke J., and Puppala N., 2007, Molecular characterization of the U.S. Peanut mini core collection using microsatellite markers, Crop Science, 47: 1718-1727. https://doi.org/10.2135/CROPSCI2006.06.0407 Krishna G., Singh B., Kim E., Morya V., and Ramteke P., 2015, Progress in genetic engineering of peanut (Arachis hypogaea L.)--a review, Plant Biotechnology Journal, 13(2): 147-162. https://doi.org/10.1111/pbi.12339 Krishna G. Zhang J., Burow M., Pittman R., Delikostadinov S., Lu Y., and Puppala N., 2004, Genetic diversity analysis in valencia peanut (Arachis hypogaea L.) using microsatellite markers, Cellular and Molecular Biology Letters, 9(4A): 685-697. Mahmood U., Li X., Fan Y., Chang W., Niu Y., Li J., Qu C., and Lu K., 2022, Multi-omics revolution to promote plant breeding efficiency, Frontiers in Plant Science, 13: 1062952. https://doi.org/10.3389/fpls.2022.1062952 Marsh J., Hu H., Gill M., Batley J., and Edwards D., 2021, Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics, Theoretical and Applied Genetics, 134: 1677-1690. https://doi.org/10.1007/s00122-021-03820-3 Naqvi R., Siddiqui H., Mahmood M., Najeebullah S., Ehsan A., Azhar M., Farooq M., Amin I., Asad S., Mukhtar Z., Mansoor S., and Asif M., 2022, Smart breeding approaches in post-genomics era for developing climate-resilient food crops, Frontiers in Plant Science, 13: 972164. https://doi.org/10.3389/fpls.2022.972164 Nigam S., Waliyar F., Aruna R., Reddy S., Kumar P., Craufurd P., Diallo A., Ntare B., and Upadhyaya H., 2009, Breeding peanut for resistance to aflatoxin contamination at ICRISAT, Peanut Science, 36: 42-49. https://doi.org/10.3146/AT07-008.1 Njoki L., Okoth S., Wachira P., Ouko A., Mwololo J., Rizzu M., Oufensou S., and Amakhobe T., 2023, Evaluation of agronomic characteristics, disease incidence, yield performance, and aflatoxin accumulation among six peanut varieties (Arachis hypogea L.) grown in Kenya, Toxins, 15(2): 111. https://doi.org/10.3390/toxins15020111 Pandey M., Monyo E., Ozias‐Akins P., Liang X., Guimaraes P., Nigam S., Upadhyaya H., Janila P., Zhang X., Guo, B., Cook D., Bertioli D., Michelmore R., and Varshney R., 2012, Advances in Arachis genomics for peanut improvement, Biotechnology Advances, 30(3): 639-651. https://doi.org/10.1016/j.biotechadv.2011.11.001 Pandey M., Pandey A., Kumar R., Nwosu C., Guo B., Wright G., Bhat R., Chen X., Bera S., Yuan M., Jiang H., Faye I., Radhakrishnan T., Wang X., Liang X., Liao B., Zhang X., Varshney R., and Zhuang W., 2020, Translational genomics for achieving higher genetic gains in groundnut, Theoretical and Applied Genetics, 133: 1679-1702. https://doi.org/10.1007/s00122-020-03592-2 Pandey M., Upadhyaya H., Rathore A., Vadez V., Sheshshayee M., Sriswathi M., Govil M., Kumar A., Gowda M., Sharma S., Hamidou F., Kumar V., Khera P., Bhat R., Khan A., Singh S., Li H., Monyo E., Nadaf H., Mukri G., Jackson S., Guo B., Liang X., and Varshney R., 2014, Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world, PLoS One, 9(8): e105228. https://doi.org/10.1371/journal.pone.0105228 Pereira J., Albuquerque M., Filho P., Nogueira R., Lima L., and Santos R., 2016, Assessment of drought tolerance of peanut cultivars based on physiological and yield traits in a semiarid environment, Agricultural Water Management, 166: 70-76. https://doi.org/10.1016/J.AGWAT.2015.12.010 Sarkar S., Oakes J., Cazenave A., Burow M., Bennett R., Chamberlin K., Wang N., White M., Payton P., Mahan J., Chagoya J., Sung C., McCall D., Thomason W., and Balota M., 2022, Evaluation of the U.S. peanut germplasm mini-core collection in the virginia-carolina region using traditional and new high-throughput methods, Agronomy, 12(8): 1945. https://doi.org/10.3390/agronomy12081945 Sharma S., Pandey M., Sudini H., Upadhyaya H., and Varshney R., 2017, Harnessing genetic diversity of wild arachis species for genetic enhancement of cultivated peanut, Crop Science, 57: 1121-1131. https://doi.org/10.2135/CROPSCI2016.10.0871
RkJQdWJsaXNoZXIy MjQ4ODYzNA==