Legume Genomics and Genetics 2024, Vol.15, No.5, 232-243 http://cropscipublisher.com/index.php/lgg 241 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Akram N., Shafiq F., and Ashraf M., 2018, Peanut (Arachis hypogaea L.): a prospective legume crop to offer multiple health benefits under changing climate, Comprehensive Reviews in Food Science and Food Safety, 17(5): 1325-1338. https://doi.org/10.1111/1541-4337.12383 Ballén‐Taborda C., Maharjan N., Hopkins M., Guimarães L., Lindsey D., Bertioli D., and Leal-Bertioli S., 2023, A study of pod constriction in a peanut population with mixed wild and cultivated genetics, Crop Science, 64(2): 586-602. https://doi.org/10.1002/csc2.21166 Bertioli D., Clevenger J., Godoy I., Stalker H., Wood S., Santos J., Ballén‐Taborda C., Abernathy B., Azevedo V., Campbell J., Chavarro C., Chu Y., Farmer A., Fonceka D., Gao D., Grimwood J., Halpin N., Korani W., Michelotto M., Ozias‐Akins P., Vaughn J., Youngblood R., Moretzsohn M., Wright G., Jackson S., Cannon S., Scheffler B., and Leal‐Bertioli S., 2021, Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange, Proceedings of the National Academy of Sciences of the United States of America, 118(38): e2104899118. https://doi.org/10.1073/pnas.2104899118 Bhatnagar-Mathur P., Sunkara S., Bhatnagar-Panwar M., Waliyar F., and Sharma K., 2015, Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops, Plant Science, 234: 119-132. https://doi.org/10.1016/j.plantsci.2015.02.009 Brown N., Branch W., Johnson M., and Wallace J., 2021, Genetic diversity assessment of Georgia peanut cultivars developed during ninety years of breeding, The Plant Genome, 14(3): e20141. https://doi.org/10.1002/tpg2.20141 Burow M., Burow M., Simpson C., Starr J., Paterson A., and Paterson A., 2001, Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.), broadening the gene pool of a monophyletic polyploid species, Genetics, 159(2): 823-837. Chao H., Zhang S., Hu Y., Ni Q., Xin S., Zhao L., Ivanisenko V., Orlov Y., and Chen M., 2023, Integrating omics databases for enhanced crop breeding, Journal of Integrative Bioinformatics, 20(4): 20230012. https://doi.org/10.1515/jib-2023-0012 Chen H., Yang X., Xu R., Chen X., Zhong H., Liu N., Huang L., Luo H., Huai D., Liu W., Chen Y., Chen J., and Jiang H., 2023, Genetic mapping of AhVt1, a novel genetic locus that confers the variegated testa color in cultivated peanut (Arachis hypogaea L.) and its utilization for marker-assisted selection, Frontiers in Plant Science, 14: 1145098. https://doi.org/10.3389/fpls.2023.1145098 Chen X., Lu Q., Liu H., Zhang J., Hong Y., Lan H., Li H., Wang J., Liu H., Li S., Pandey M., Zhang Z., Zhou G., Yu J., Zhang G., Yuan J., Li X., Wen S., Meng F., Yu S., Wang X., Siddique K., Liu Z., Paterson A., Varshney R., and Liang X., 2019, Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement, Molecular Plant, 12(7): 920-934. https://doi.org/10.1016/j.molp.2019.03.005 Cui M., Han S., Wang D., Haider M., Guo J., Zhao Q., Du P., Sun Z., Qi F., Zheng Z., Huang B., Dong W., Li P., and Zhang X., 2022, Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus L. in cultivated peanut (Arachis hypogaea L.), Frontiers in Plant Science, 13: 899177. https://doi.org/10.3389/fpls.2022.899177 Deng Y., Chen H., Zhang C., Cai T., Zhang B., Zhou S., Fountain J., Pan R., Guo B., and Zhuang W., 2018, Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut, Plant Biology, 20(4): 737-750. https://doi.org/10.1111/plb.12726 Dutra W., Guerra Y., Ramos J., Fernandes P., Silva C., Bertioli D., Leal‐Bertioli S., and Santos R., 2018, Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield, PLoS One, 13(6): e0198776. https://doi.org/10.1371/journal.pone.0198776 Dwivedi S., Scheben A., Edwards D., Spillane C., and Ortiz R., 2017, Assessing and exploiting functional diversity in germplasm pools to enhance abiotic stress adaptation and yield in cereals and food legumes, Frontiers in Plant Science, 88: 1461. https://doi.org/10.3389/fpls.2017.01461 Fonceka D., Tossim H., Rivallan R., Vignes H., Faye I., Ndoye O., Moretzsohn M., Bertioli D., Glaszmann J., Courtois B., and Rami J., 2012, Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding, BMC Plant Biology, 12: 26-26. https://doi.org/10.1186/1471-2229-12-26 Holbrook C., and Dong W., 2005, Development and evaluation of a mini core collection for the U.S. peanut germplasm collection, Crop Science, 45: 1540-1544. https://doi.org/10.2135/CROPSCI2004.0368 Holbrook C., Ozias‐Akins P., Chu Y., and Guo B., 2011, Impact of molecular genetic research on peanut cultivar development, Agronomy, 1: 3-17. https://doi.org/10.3390/AGRONOMY1010003
RkJQdWJsaXNoZXIy MjQ4ODYzNA==