Legume Genomics and Genetics 2024, Vol.15, No.5, 221-231 http://cropscipublisher.com/index.php/lgg 229 Budhlakoti N., Kushwaha A., Rai A., Chaturvedi K., Kumar A., Pradhan A., Kumar U., Kumar R., Juliana P., Mishra D., and Kumar S., 2022, Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops, Frontiers in Genetics, 13: 832153. https://doi.org/10.3389/fgene.2022.832153 Choudhary A., Jain S., Dubey A., Kumar J., Sharma M., Gupta K., Sharma L., Prakash V., and Kumar S., 2022, Conventional and molecular breeding for disease resistance in chickpea: status and strategies, Biotechnology and Genetic Engineering Reviews, 39(2): 193-224. https://doi.org/10.1080/02648725.2022.2110641 Djouider S., Gentzbittel L., Jana R., Rickauer M., Ben C., and Lazali M., 2022, Contribution to improving the chickpea (Cicer arietinum L.) efficiency in low-phosphorus farming systems: assessment of the relationships between the P and N nutrition, nodulation capacity and productivity performance in P-deficient field conditions, Agronomy, 12(12): 3150. https://doi.org/10.3390/agronomy12123150 Gaur P., Jukanti A., and Varshney R., 2012, Impact of genomic technologies on chickpea breeding strategies, Agronomy, 2: 199-221. https://doi.org/10.3390/AGRONOMY2030199 Halladakeri P., Gudi S., Akhtar S., Singh G., Saini D., Hilli H., Sakure A., Macwana S., and Mir R., 2023, Meta‐analysis of the quantitative trait loci associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits in pigeonpea (Cajanus cajan L.), The Plant Genome, 16(3): e20342. https://doi.org/10.1002/tpg2.20342 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Hiremath P., Farmer A., Cannon S., Woodward J., Kudapa H., Tuteja R., Kumar A., Bhanuprakash A., Mulaosmanovic B., Gujaria N., Krishnamurthy L., Gaur P., Kavikishor P., Shah T., Srinivasan R., Lohse M., Xiao Y., Town C., Cook D., May G., and Varshney R., 2011, Large-scale transcriptome analysis in chickpea (Cicer arietinumL.), an orphan legume crop of the semi-arid tropics of Asia and Africa, Plant Biotechnology Journal, 9: 922-931. https://doi.org/10.1111/j.1467-7652.2011.00625.x Hou J., Zhang J., Bao F., Zhang P., Han H., Tan H., Chen B., and Zhao F., 2024, The contribution of exotic varieties to maize genetic improvement, Molecular Plant Breeding, 15(4): 198-208. https://doi.org/10.5376/mpb.2024.15.0020 Karalija E., Vergata C., Basso M., Negussu M., Zaccai M., Grossi-de-Sá M., and Martinelli F., 2022, Chickpeas’ tolerance of drought and heat: current knowledge and next steps, Agronomy, 12(10): 2248. https://doi.org/10.3390/agronomy12102248 Koul B., Sharma K., Sehgal V., Yadav D., Mishra M., and Bharadwaj C., 2022, Chickpea (Cicer arietinumL.) biology and biotechnology: from domestication to biofortification and biopharming, Plants, 11(21): 2926. https://doi.org/10.3390/plants11212926 Lauterberg M., Tschiersch H., Papa R., Bitocchi E., and Neumann K., 2023, Engaging precision phenotyping to scrutinize vegetative drought tolerance and recovery in chickpea plant genetic resources, Plants, 12(15): 2866. https://doi.org/10.3390/plants12152866 Li H., Rodda M., Gnanasambandam A., Aftab M., Redden R., Hobson K., Rosewarne G., Materne M., Kaur S., and Slater A., 2015, Breeding for biotic stress resistance in chickpea: progress and prospects, Euphytica, 204: 257-288. https://doi.org/10.1007/s10681-015-1462-8 Madurapperumage A., Tang L., Thavarajah P., Bridges W., Shipe E., Vandemark G., and Thavarajah D., 2021, Chickpea (Cicer arietinum L.) as a source of essential fatty acids-a biofortification approach, Frontiers in Plant Science, 12: 734980. https://doi.org/10.3389/fpls.2021.734980 Millán T., Clarke H., Siddique K., Buhariwalla H., Gaur P., Kumar J., Gil J., Kahl G., and Winter P., 2006, Chickpea molecular breeding: new tools and concepts, Euphytica, 147: 81-103. https://doi.org/10.1007/s10681-006-4261-4 Mir R., Reynolds M., Pinto F., Khan M., and Bhat M., 2019, High-throughput phenotyping for crop improvement in the genomics era, Plant Science, 282: 60-72. https://doi.org/10.1016/J.PLANTSCI.2019.01.007 Roorkiwal M., Bharadwaj C., Barmukh R., Dixit G., Thudi M., Gaur P., Chaturvedi S., Fikre A., Hamwieh A., Kumar S., Sachdeva S., Ojiewo C., Tar’an B., Wordofa N., Singh N., Siddique K., and Varshney R., 2020, Integrating genomics for chickpea improvement: achievements and opportunities, Theoretical and Applied Genetics, 133: 1703-1720. https://doi.org/10.1007/s00122-020-03584-2 Roorkiwal M., Jain A., Kale S., Doddamani D., Chitikineni A., Thudi M., and Varshney R., 2017, Development and evaluation of high‐density Axiom® CicerSNP Array for high‐resolution genetic mapping and breeding applications in chickpea, Plant Biotechnology Journal, 16: 890-901. https://doi.org/10.1111/pbi.12836 Roorkiwal M., Rathore A., Das R., Singh M., Jain A., Srinivasan S., Gaur P., Chellapilla B., Tripathi S., Li Y., Hickey J., Lorenz A., Sutton T., Crossa J., Jannink J., and Varshney R., 2016, Genome-enabled prediction models for yield related traits in chickpea, Frontiers in Plant Science, 7: 1666. https://doi.org/10.3389/fpls.2016.01666
RkJQdWJsaXNoZXIy MjQ4ODYzNA==