LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 199-209 http://cropscipublisher.com/index.php/lgg 208 Hajiahmadi Z., Movahedi A., Wei H., Li D., Orooji Y., Ruan H., and Zhuge Q., 2019, Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants, International Journal of Molecular Sciences, 20(15): 3719. https://doi.org/10.3390/ijms20153719 Haque E., Taniguchi H., Hassan M., Bhowmik P., Karim M., Śmiech M., Zhao K., Rahman M., and Islam T., 2018, Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges, Frontiers in Plant Science, 9: 617. https://doi.org/10.3389/fpls.2018.00617 Ji J., Zhang C., Sun Z., Wang L., Duanmu D., and Fan Q., 2019, Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9, International Journal of Molecular Sciences, 20(10): 2471. https://doi.org/10.3390/ijms20102471 Liu T., Ji J., Cheng Y., Zhang S., Wang Z., Duan K., and Wang Y., 2023, CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean, Journal of Integrative Plant Biology, 65(7): 1609-1612. https://doi.org/10.1111/jipb.13476 Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., and Jin S., 2020, CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off‐target evaluation, and strategies to mitigate off‐target effects, Advanced Science, 7(6): 1902312. https://doi.org/10.1002/advs.201902312 Mao Y., Botella J., Liu Y., and Zhu J., 2019, Gene editing in plants: progress and challenges, National Science Review, 6: 421-437. https://doi.org/10.1093/nsr/nwz005 Meng Y., Hou Y., Wang H., Ji R., Liu B., Wen J., Niu L., and Lin H., 2016, Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula, Plant Cell Reports, 36: 371-374. https://doi.org/10.1007/s00299-016-2069-9 Nazir R., Mandal S., Mitra S., Ghorai M., Das N., Jha N., Majumder M., Pandey D., and Dey A., 2022, CRISPR/Cas genome-editing toolkit to enhance salt stress tolerance in rice and wheat, Physiologia Plantarum, 174: e13642. https://doi.org/10.1111/ppl.13642. Niazian M., Belzile F., and Torkamaneh D., 2022, CRISPR/Cas9 in planta hairy root transformation: a powerful platform for functional analysis of root traits in soybean, Plants, 11(8): 1044. https://doi.org/10.3390/plants11081044 Pandey M., Roorkiwal M., Singh V., Ramalingam A., Kudapa H., Thudi M., Chitikineni A., Rathore A., and Varshney R., 2016, Emerging genomic tools for legume breeding: current status and future prospects, Frontiers in Plant Science, 7: 455. https://doi.org/10.3389/fpls.2016.00455 Ran F., Hsu P., Wright J., Agarwala V., Agarwala V., Scott D., and Zhang F., 2013, Genome engineering using the CRISPR-Cas9 system, Nature Protocols, 8: 2281-2308. https://doi.org/10.1038/nprot.2013.143 Thomson M., 2019, 230 Genome editing applications in plants: high-throughput CRISPR/Cas editing for crop improvement, Journal of Animal Science, 97: 56-56. https://doi.org/10.1093/jas/skz258.115 Tiwari J., Singh A., and Behera T., 2023, CRISPR/Cas genome editing in tomato improvement: advances and applications, Frontiers in Plant Science, 14: 1121209. https://doi.org/10.3389/fpls.2023.1121209 Varshney R., 2016, Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut, Plant Science, 242: 98-107. https://doi.org/10.1016/j.plantsci.2015.09.009 Wang Y., Zafar N., Ali Q., Manghwar H., Wang G., Yu L., Ding X., Ding F., Hong N., Wang G., and Jin S., 2022, CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives, Cells, 11(23): 3928. https://doi.org/10.3390/cells11233928 Zafar S., Zaidi S., Gaba Y., Singla-Pareek S., Dhankher O., Li X., Mansoor S., and Pareek A., 2020, Engineering abiotic stress tolerance via CRISPR-Cas mediated genome editing, Journal of Experimental Botany, 71(2): 470-479. https://doi.org/10.1093/jxb/erz476 Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N., and Zhu J., 2014, The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation, Plant Biotechnology Journal, 12(6): 797-807. https://doi.org/10.1111/pbi.12200 Zhang X., Tee L., Wang X., Huang Q., and Yang S., 2015, Off-target effects in CRISPR/Cas9-mediated genome engineering, molecular therapy, Nucleic Acids, 4: e264. https://doi.org/10.1038/mtna.2015.37

RkJQdWJsaXNoZXIy MjQ4ODYzNA==