LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 187-198 http://cropscipublisher.com/index.php/lgg 196 Ambika, Aski M.S., Gayacharan, Hamwieh A., Talukdar A., Kumar Gupta S., Sharma B.B., Joshi R., Upadhyaya H.D., Singh K., and Kumar R., 2022, Unraveling origin, history, genetics, and strategies for accelerated domestication and diversification of food legumes, Frontiers in Genetics, 13: 932430. https://doi.org/10.3389/fgene.2022.932430 Araújo S., Beebe S., Crespi M., Delbreil B., Gonzalez E., Gruber V., Lejeune-Hénaut I., Link W., Monteros M., Prats E., Rao I., Vadez V., and Patto M., 2015, Abiotic stress responses in legumes: strategies used to cope with environmental challenges, Critical Reviews in Plant Sciences, 34: 237-280. https://doi.org/10.1080/07352689.2014.898450 Assefa T., Mahama A., Brown A., Cannon E., Rubyogo J., Rao I., Rao I., Blair M., and Cannon S., 2019, A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.), Molecular Breeding, 39: 1-23. https://doi.org/10.1007/s11032-018-0920-0 Bitocchi E., Bellucci E., Giardini A., Rau D., Rodriguez M., Biagetti E., Santilocchi R., Zeuli P., Gioia T., Logozzo G., Attene G., Nanni L., and Papa R., 2013, Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes, The New Phytologist, 197(1): 300-313. https://doi.org/10.1111/j.1469-8137.2012.04377.x Bohra A., Tiwari A., Kaur P., Ganie S., Raza A., Roorkiwal M., Mir R., Fernie A., Smýkal P., and Varshney R., 2022, The key to the future lies in the past: insights from grain legume domestication and improvement should inform future breeding strategies, Plant and Cell Physiology, 63: 1554-1572. https://doi.org/10.1093/pcp/pcac086 Burle M., Fonseca J., Kami J., and Gepts P., 2010, Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity, Theoretical and Applied Genetics, 121: 801-813. https://doi.org/10.1007/s00122-010-1350-5 Choi H., Mun J., Kim D., Zhu H., Baek J., Mudge J., Roe B., Ellis N., Doyle J., Kiss G., Young N., and Cook D., 2004, Estimating genome conservation between crop and model legume species, Proceedings of the National Academy of Sciences of the United States of America, 101(43): 15289-15294. https://doi.org/10.1073/PNAS.0402251101 Coyne C., Kumar S., Wettberg E., Marques E., Berger J., Redden R., Ellis T., Brus J., Zablatzká L., and Smýkal P., 2020, Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement, Legume Science, 2(2): e36. https://doi.org/10.1002/leg3.36 Crameri S., Fior S., Zoller S., and Widmer A., 2021, A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (Dalbergia spp.) and the legume family (Fabaceae), Molecular Ecology Resources, 22: 3087-3105. https://doi.org/10.1111/1755-0998.13666 Delêtre M., Soengas B., Vidaurre P., Meneses R., Vásquez O., Balbín I., Santayana M., Heider B., and Sørensen M., 2017, Ecotypic differentiation under farmers’ selection: molecular insights into the domestication of Pachyrhizus Rich. ex DC. (Fabaceae) in the Peruvian Andes, Evolutionary Applications, 10: 498-513. https://doi.org/10.1111/eva.12472 Duc G., Agrama H., Bao S., Berger J., Bourion V., Ron A., Gowda C., Mikić A., Millot D., Singh K., Tullu A., Vandenberg A., Patto M., Warkentin T., and Zong X., 2015, Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes, Critical Reviews in Plant Sciences, 34: 381-411. https://doi.org/10.1080/07352689.2014.898469 Egan A., and Vatanparast M., 2019, Advances in legume research in the genomics era, Australian Systematic Botany, 32: 459-483. https://doi.org/10.1071/SB19019 Fuller D., 2007, Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world, Annals of Botany, 100: 903-924. https://doi.org/10.1093/aob/mcm048 Gioia T., Logozzo G., Marzario S., Zeuli P., and Gepts P., 2019, Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris), PLoS One, 14(1): e0211342. https://doi.org/10.1371/journal.pone.0211342 Gore P., Gupta V., Singh R., Tripathi K., Kumar R., Kumari G., Madhavan L., Dikshit H., Venkateswaran K., Pandey A., Singh N., Bhat K., Nair R., and Pratap A., 2022, Insights into the genetic diversity of an underutilized Indian legume, Vigna stipulacea (Lam.) Kuntz., using morphological traits and microsatellite markers, PLoS One, 17(1): e0262634. https://doi.org/10.1371/journal.pone.0262634 Gujaria-Verma N., Vail S., Carrasquilla-Garcia N., Penmetsa R., Cook D., Farmer A., Vandenberg A., Bett K., Gepts P., and Akhunov E., 2014, Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea, Frontiers in Plant Science, 5: 676. https://doi.org/10.3389/fpls.2014.00676 Jansen R., Wojciechowski M., Sanniyasi E., Lee S., and Daniell H., 2008, Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpPintron losses among legumes (Leguminosae), Molecular Phylogenetics and Evolution, 48(3): 1204-1217. https://doi.org/10.1016/j.ympev.2008.06.013

RkJQdWJsaXNoZXIy MjQ4ODYzNA==