LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 176-186 http://cropscipublisher.com/index.php/lgg 186 Torkamaneh D., Laroche J., Boyle B., Hyten D., and Belzile F., 2021, A bumper crop of SNPs in soybean through high‐density genotyping‐by‐sequencing (HD‐GBS), Plant Biotechnology Journal, 19: 860-862. https://doi.org/10.1111/pbi.13551 Valliyodan B., Ye H., Song L., Murphy M., Shannon J., and Nguyen H., 2016, Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans, Journal of Experimental Botany, 68: 1835-1849. https://doi.org/10.1093/jxb/erw433 Varshney R., 2016, Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut, Plant Science, 242: 98-107. https://doi.org/10.1016/j.plantsci.2015.09.009 Varshney R., Bohra A., Yu J., Graner A., Zhang Q., and Sorrells M., 2021, Designing future crops: genomics-assisted breeding comes of age, Trends in Plant Science, 26(6): 631-649. https://doi.org/10.1016/j.tplants.2021.03.010 Varshney R., Graner A., and Sorrells M., 2005, Genomics-assisted breeding for crop improvement, Trends in Plant Science, 10(12): 621-630. https://doi.org/10.1016/J.TPLANTS.2005.10.004 Varshney R., Penmetsa R., Dutta S., Kulwal P., Saxena R., Datta S., Sharma T., Rosen B., Carrasquilla-Garcia N., Farmer A., Dubey A., Saxena K., Gao J., Fakrudin B., Singh M., Singh B., Wanjari K., Yuan M., Srivastava R., Kilian A., Upadhyaya H., Mallikarjuna N., Town C., Bruening G., He G., May G., Mccombie R., Jackson S., Singh N., and Cook D., 2009, Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.), Molecular Breeding, 26: 393-408. https://doi.org/10.1007/s11032-009-9327-2 Varshney R., Ribaut J., Buckler E., Tuberosa R., Rafalski J., and Langridge P., 2012, Can genomics boost productivity of orphan crops, Nature Biotechnology, 30: 1172-1176. https://doi.org/10.1038/nbt.2440 Wei W., Liang D., Bian X., Shen M., Xiao J., Zhang W., Ma B., Lin Q., Lv J., Chen X., Chen S., and Zhang J., 2019, GmWRKY54 improves drought tolerance through activating genes in ABA and Ca2+ signaling pathways in transgenic soybean, The Plant Journal, 10: 14-49. https://doi.org/10.1111/tpj.14449 Xiao Y., Liu H., Wu L., Warburton M., and Yan J., 2017, Genome-wide association studies in maize: praise and stargaze, Molecular Plant, 10(3): 359-374. https://doi.org/10.1016/j.molp.2016.12.008 Xu Y., Li P., Yang Z., and Xu C., 2017, Genetic mapping of quantitative trait loci in crops, Crop Journal, 5: 175-184. https://doi.org/10.1016/J.CJ.2016.06.003 Yang Q., Zhang D., and Xu M., 2012, A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny, Journal of Integrative Plant Biology, 54(4): 228-237. https://doi.org/10.1111/j.1744-7909.2012.01108.x Zhang L., Li T., Wang Y., Zhang Y., and Dong Y., 2019, FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression, Plant Cell Reports, 38: 1039-1051. https://doi.org/10.1007/s00299-019-02424-y Zhang Y., Andrews H., Eglitis-Sexton J., Godwin I., Tanurdžić M., and Crisp P., 2022, Epigenome guided crop improvement: current progress and future opportunities, Emerging Topics in Life Sciences, 6: 141-151. https://doi.org/10.1042/ETLS20210258 Zou G., Zhai G., Feng Q., Yan S., Wang A., Zhao Q., Shao J., Zhang Z., Zou J., Han B., and Tao Y., 2012, Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods, Journal of Experimental Botany, 63(15): 5451-5462. https://doi.org/10.1093/jxb/ers205

RkJQdWJsaXNoZXIy MjQ4ODYzNA==