LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 176-186 http://cropscipublisher.com/index.php/lgg 185 Kole C., Muthamilarasan M., Henry R., Edwards D., Sharma R., Abberton M., Batley J., Bentley A., Blakeney M., Bryant J., Cai H., Çakır M., Cseke L., Cockram J., Oliveira A., Pace C., Dempewolf H., Ellison S., Gepts P., Greenland A., Hall A., Hori K., Hughes S., Humphreys M., Iorizzo M., Ismail A., Marshall A., Mayes S., Nguyen H., Ogbonnaya F., Ortiz R., Paterson A., Simon P., Tohme J., Tuberosa R., Valliyodan B., Varshney R., Wullschleger S., Yano M., and Prasad M., 2015, Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects, Frontiers in Plant Science, 6: 563. https://doi.org/10.3389/fpls.2015.00563 Kumar J., Gupta D., Gupta S., Dubey S., Gupta P., and Kumar S., 2017, Quantitative trait loci from identification to exploitation for crop improvement, Plant Cell Reports, 36: 1187-1213. https://doi.org/10.1007/s00299-017-2127-y Kumar R., Jorben J., Yadav R., and Senapati M., 2020, Genomics and its application in crop improvement, Journal of Pharmacognosy and Phytochemistry, 9(1): 547-552. https://doi.org/10.22271/PHYTO.2020.V9.I1I.10488 Kumar S., and Pandey G., 2020, Biofortification of pulses and legumes to enhance nutrition, Heliyon, 6(3): e03682. https://doi.org/10.1016/j.heliyon.2020.e03682 Lee T., Kim H., and Lee I., 2015, Network-assisted crop systems genetics: network inference and integrative analysis, Current Opinion in Plant Biology, 24: 61-70. https://doi.org/10.1016/j.pbi.2015.02.001 Liu H., and Yan J., 2018, Crop genome‐wide association study: a harvest of biological relevance, The Plant Journal, 97: 8-18. https://doi.org/10.1111/tpj.14139 Macaulay I., and Voet T., 2014, Single cell genomics: advances and future perspectives, PLoS Genetics, 10(1): e1004126. https://doi.org/10.1371/journal.pgen.1004126 Morrell P., Buckler E., and Ross-Ibarra J., 2011, Crop genomics: advances and applications, Nature Reviews Genetics, 13: 85-96. https://doi.org/10.1038/nrg3097 Nerkar G., Devarumath S., Purankar M., Kumar A., Valarmathi R., Devarumath R., and Appunu C., 2022, Advances in crop breeding through precision genome editing, Frontiers in Genetics, 13: 880195. https://doi.org/10.3389/fgene.2022.880195 Nguyen K., Grondin A., Courtois B., and Gantet P., 2019, Next-generation sequencing accelerates crop gene discovery, Trends in Plant Science, 24(3): 263-274. https://doi.org/10.1016/j.tplants.2018.11.008 Okogbenin E., and Fregene M., 2003, Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz), Theoretical and Applied Genetics, 107: 1452-1462. https://doi.org/10.1007/s00122-003-1383-0 Pavan S., Delvento C., Ricciardi L., Lotti C., Ciani E., and D’Agostino N., 2020, Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies, Frontiers in Genetics, 11: 447. https://doi.org/10.3389/fgene.2020.00447 Pavlopoulos G., Oulas A., Iacucci E., Sifrim A., Moreau Y., Schneider R., Aerts J., and Iliopoulos I., 2013, Unraveling genomic variation from next generation sequencing data, BioData Mining, 6: 1-25. https://doi.org/10.1186/1756-0381-6-13 Purugganan M., and Jackson S., 2021, Advancing crop genomics from lab to field, Nature Genetics, 53: 595-601. https://doi.org/10.1038/s41588-021-00866-3 Roy F., Boye J., and Simpson B., 2010, Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil, Food Research International, 43: 432-442. https://doi.org/10.1016/J.FOODRES.2009.09.002 Shahriari A., Soltani Z., Tahmasebi A., and Poczai P., 2022, Integrative system biology analysis of transcriptomic responses to drought stress in soybean (Glycine max L.), Genes, 13(10): 1732. https://doi.org/10.3390/genes13101732 Shariatipour N., Heidari B., Tahmasebi A., and Richards C., 2021, Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality, and agronomic traits in wheat (Triticum aestivumL.), Frontiers in Plant Science, 12: 709817. https://doi.org/10.3389/fpls.2021.709817 Sun M., Li Y., Zheng J., Wu D., Li C., Li Z., Zang Z., Zhang Y., Fang Q., Li W., Han Y., Zhao X., and Li Y., 2022, A nuclear factor Y-B transcription factor, GmNFYB17, regulates resistance to drought stress in soybean, International Journal of Molecular Sciences, 23(13): 7242. https://doi.org/10.3390/ijms23137242 Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., Innan H., Cano L., Kamoun S., and Terauchi R., 2013, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, The Plant Journal, 74(1): 174-183. https://doi.org/10.1111/tpj.12105 Thudi M., Palakurthi R., Schnable J., Chitikineni A., Dreisigacker S., Mace E., Srivastava R., Satyavathi C., Odeny D., Tiwari V., Lam H., Hong Y., Singh V., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S., Close T., Shubo W., and Varshney R., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351

RkJQdWJsaXNoZXIy MjQ4ODYzNA==