LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 163-175 http://cropscipublisher.com/index.php/lgg 174 Li X., Zhou H., Cheng L., Ma N., Cui B., Wang W., Zhong Y., and Liao H., 2022, Shoot-to-root translocated GmNN1/FT2a triggers nodulation and regulates soybean nitrogen nutrition, PLoS Biology, 20(8): e3001739. https://doi.org/10.1371/journal.pbio.3001739 Lindström K., and Mousavi S., 2019, Effectiveness of nitrogen fixation in rhizobia, Microbial Biotechnology, 13: 1314-1335. https://doi.org/10.1111/1751-7915.13517 Lipa P., and Janczarek M., 2020, Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses, Peer J., 8: e8466. https://doi.org/10.7717/peerj.8466 Liu A., Contador C., Fan K., and Lam H., 2018, Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes, Frontiers in Plant Science, 9: 1860. https://doi.org/10.3389/fpls.2018.01860 Lodwig E., Hosie A., Bourdes A., Findlay K., Allaway D., Karunakaran R., Downie J., and Poole P., 2003, Amino-acid cycling drives nitrogen fixation in the legume-rhizobium symbiosis, Nature, 422: 722-726. https://doi.org/10.1038/nature01527 Oldroyd G.E., Murray J.D., Poole P.S., and Downie J.A., 2011, The rules of engagement in the legume-rhizobial symbiosis, Annual study of Genetics, 45: 119-144. https://doi.org/10.1146/annurev-genet-110410-132549 Raza A., Zahra N., Hafeez M., Ahmad M., Iqbal S., Shaukat K., and Ahmad G., 2020, Nitrogen fixation of legumes: biology and physiology, The Plant Family Fabaceae, 2020: 43-74. https://doi.org/10.1007/978-981-15-4752-2_3 Rogers C., and Oldroyd G.E., 2014, Synthetic biology approaches to engineering the nitrogen symbiosis in cereals, Journal of Experimental Botany, 65(8): 1939-1946. https://doi.org/10.1093/jxb/eru098 Roux B., Rodde N., Jardinaud M., Timmers T., Sauviac L., Cottret L., Carrere S., Sallet E., Courcelle E., Moreau S., Debellé F., Capela D., Carvalho-Niebel F., Gouzy J., Bruand C., and Gamas P., 2014, An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, The Plant Journal, 77(6): 817-837. https://doi.org/10.1111/tpj.12442 Rutten L., Miyata K., Roswanjaya Y., Huisman R., Bu F., Hartog M., Linders S., Velzen R., Zeijl A., Bisseling T., Kohlen W., and Geurts R., 2020, Duplication of symbiotic lysin motif receptors predates the evolution of nitrogen-fixing nodule symbiosis, Plant Physiology, 184(2): 1004-1023. https://doi.org/10.1104/pp.19.01420 Soyano T., Hirakawa H., Sato S., Hayashi M., and Kawaguchi M., 2013, Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production, Proceedings of the National Academy of Sciences, 110(13): 473-482. https://doi.org/10.1073/pnas.1412716111 Svistoonoff S., Benabdoun F., Nambiar-Veetil M., Imanishi L., Vaissayre V., Cesari S., Diagne N., Hocher V., Billy F., Bonneau J., Wall L., Ykhlef N., Rosenberg C., Bogusz D., Franche C., and Gherbi H., 2013, The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis, PLoS One, 8(5): e64515. https://doi.org/10.1371/journal.pone.0064515 Velde W., Zehirov G., Szatmári Á., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikuláss K., Nagy A., Tiricz H., Satiat-Jeunemaitre B., Alunni B., Bourge M., Kucho K., Abe M., Kereszt A., Maróti G., Uchiumi T., Kondorosi E., and Mergaert P., 2010, Plant peptides govern terminal differentiation of bacteria in symbiosis, Science, 327: 1122-1126. https://doi.org/10.1126/science.1184057 Veličković D., Liao Y., Thibert S., Veličković M., Anderton C., Voglmeir J., Stacey G., and Zhou M., 2022, Spatial mapping of plant N-glycosylation cellular heterogeneity inside soybean root nodules provided insights into legume-rhizobia symbiosis, Frontiers in Plant Science, 13: 869281. https://doi.org/10.3389/fpls.2022.869281 Wang Q., Liu J., and Zhu H., 2018, Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions, Frontiers in Plant Science, 9: 313. https://doi.org/10.3389/fpls.2018.00313 Wang Y., Luo X., Sun F., Hu J., Zha X., Su W., and Yang J., 2015, Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice, Nature Communications, 9(1): 3516. https://doi.org/10.1038/s41467-018-05829-7 Yang Z., Du H., Xing X., Li W., Kong Y., Li X., and Zhang C., 2021, A small heat shock protein, GmHSP17.9, from nodule confers symbiotic nitrogen fixation and seed yield in soybean, Plant Biotechnology Journal, 20: 103-115. https://doi.org/10.1111/pbi.13698 Yun J., Wang C., Zhang F., Chen L., Sun Z., Cai Y., Luo Y., Liao J., Wang Y., Cha Y., Zhang X., Ren Y., Wu J., Hasegawa P., Tian C., Su H., Ferguson B., Gresshoff P., Hou W., Han T., and Li X., 2023, A nitrogen fixing symbiosis-specific pathway required for legume flowering, Science Advances, 9(2): eade1150. https://doi.org/10.1126/sciadv.ade1150

RkJQdWJsaXNoZXIy MjQ4ODYzNA==