LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 163-175 http://cropscipublisher.com/index.php/lgg 173 Chen L., Qin L., Zhou L., Li X., Chen Z., Sun L., Wang W., Lin Z., Zhao J., Yamaji N., Ma J., Gu M., Xu G., and Liao H., 2018, A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean, The New Phytologist, 221(4): 2013-2025. https://doi.org/10.1111/nph.15541 Combier J.P., Frugier F., de Billy F., Boualem A., El-Yahyaoui F., Moreau S., Vernié T., Ott T., Gamas P., Crespi M., and Crespi M., 2006, MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula, Genes and Development, 20(22): 3084-3088. https://doi.org/10.1101/GAD.402806 Contador C., Lo S., Chan S., and Lam H., 2020, Metabolic analyses of nitrogen fixation in the soybean microsymbiont Sinorhizobium fredii using constraint-based modeling, MSystems, 5(1): 10-1128. https://doi.org/10.1128/mSystems.00516-19 Cui W., Zhang B., Zhao R., Liu L., Jiao J., Zhang Z., and Tian C., 2021, Lineage-specific rewiring of core pathways predating innovation of legume nodules shapes symbiotic efficiency, MSystems, 6(2): 10-1128. https://doi.org/10.1128/mSystems.01299-20 Dall’Agnol R., Ribeiro R., Delamuta J., Ormeño-Orrill E., Rogel M., Andrade D., Martínez-Romero E., and Hungria M., 2014, Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil, International Journal of Systematic and Evolutionary Microbiology, 64(Pt9): 3222-3229. https://doi.org/10.1099/ijs.0.064543-0 Delaux P., Radhakrishnan G., and Oldroyd G., 2015, Tracing the evolutionary path to nitrogen-fixing crops, Current Opinion in Plant Biology, 26: 95-99. https://doi.org/10.1016/j.pbi.2015.06.003 diCenzo G., Tesi M., Pfau T., Mengoni A., and Fondi M., 2020, Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium, Nature Communications, 11(1): 2574. https://doi.org/10.1038/s41467-020-16484-2 Dixon R., and Kahn D., 2004, Genetic regulation of biological nitrogen fixation, Nature Reviews Microbiology, 2(8): 621-631. https://doi.org/10.1038/nrmicro954 Fan W., Xia C., Wang S., Liu J., Deng L., Sun S., and Wang X., 2022, Rhizobial infection of 4C cells triggers their endoreduplication during symbiotic nodule development in soybean, The New Phytologist, 234(3): 1018-1030. https://doi.org/10.1111/nph.18036 Ficano N., Porder S., and McCulloch L., 2021, Tripartite legume-rhizobia-mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps, Ecology, 102(11): e03489. https://doi.org/10.1002/ecy.3489 Gavrin A., Loughlin P., Brear E., Griffith O., Bedon F., Grotemeyer M., Escudero V., Reguera M., Qu Y., Mohd-Noor S., Chen C., Osorio M., Rentsch D., González-Guerrero M., Day D., and Smith P., 2021, Soybean yellow stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation, Plant Physiology, 186(1): 581-598. https://doi.org/10.1093/plphys/kiab044 Gonzalez V., Santamaría R., Bustos P., Hernández-González I., Medrano-Soto A., Moreno-Hagelsieb G., Janga S., Ramírez M., Jiménez-Jacinto V., Collado-Vides J., and Dávila G., 2006, The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons, Proceedings of the National Academy of Sciences of the United States of America, 103(10): 3834-3839. https://doi.org/10.1073/PNAS.0508502103 Griesmann M., Chang Y., Liu X., Song Y., Haberer G., Crook M., Billault-Penneteau B., Lauressergues D., Keller J., Imanishi L., Roswanjaya Y., Kohlen W., Pujić P., Battenberg K., Alloisio N., Liang Y., Hilhorst H., Salgado M., Hocher V., Gherbi H., Svistoonoff S., Doyle J., He S., Xu Y., Xu S., Qu J., Gao Q., Fang X., Fu Y., Normand P., Berry A., Wall L., Ané J., Pawlowski K., Xu X., Yang H., Spannagl M., Mayer K., Wong G., Parniske M., Delaux P., and Cheng S., 2018, Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis, Science, 361: eaat1743. https://doi.org/10.1126/science.aat1743 He C., Gao H., Wang H., Guo Y., He M., Peng Y., and Wang X., 2020, GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean, Molecular Plant, 14(3): 488-502. https://doi.org/10.1016/j.molp.2020.12.015 Hirsch S., Kim J., Munoz A., Heckmann A.B., Downie J.A., and Oldroyd G.E., 2009, GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula, The Plant Cell, 21(2): 545-557. https://doi.org/10.1105/tpc.108.064501 Ibañez F., Wall L., and Fabra A., 2016, Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots, Journal of Experimental Botany, 68: 1905-1918. https://doi.org/10.1093/jxb/erw387 Jach M., Sajnaga E., and Ziaja M., 2022, Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils, Biology, 11(5): 676. https://doi.org/10.3390/biology11050676 Lepetit M., and Brouquisse R., 2023, Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling, Frontiers in Plant Science, 14: 1114840. https://doi.org/10.3389/fpls.2023.1114840

RkJQdWJsaXNoZXIy MjQ4ODYzNA==