LGG_2024v15n4

Legume Genomics and Genetics 2024, Vol.15, No.4, 152-162 http://cropscipublisher.com/index.php/lgg 161 a framework for understanding the genetic basis of important traits and their evolutionary history, aiding breeding strategies. Detailed genomic analyses of model legumes like Medicago truncatula and narrow-leafed lupin support functional genomics studies, enabling gene identification and manipulation in key physiological processes. To further advance legume genomic research, the following strategies are recommended: expanding comparative genomic studies to include a broader range of legume species, particularly those with unique evolutionary histories or agronomic importance; integrating multi-omics approaches to gain a comprehensive understanding of gene function and regulation; prioritizing research on understudied legume species to uncover novel genetic and evolutionary insights; leveraging advanced genomic technologies to refine genome assemblies and improve the resolution of syntenic and chromosomal analyses; and promoting collaborative research efforts across institutions and countries to share resources, data, and expertise. Implementing these recommendations will help the legume research community continue to make significant strides in understanding and harnessing the genetic potential of this diverse and agriculturally important plant family. Acknowledgments The authors extend sincere thanks to two anonymous peer reviewers for their feedback on the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Afzal M., Alghamdi S., Migdadi H., Khan M.N., Mirza S., Mirza S., and El-Harty E., 2019, Legume genomics and transcriptomics: from classic breeding to modern technologies, Saudi Journal of Biological Sciences, 27: 543-555. https://doi.org/10.1016/j.sjbs.2019.11.018 Bohra A., Tiwari A., Kaur P., Ganie S., Raza A., Roorkiwal M., Mir R., Fernie A., Smýkal P., and Varshney R., 2022, The key to the future lies in the past: insights from grain legume domestication and improvement should inform future breeding strategies, Plant and Cell Physiology, 63: 1554-1572. https://doi.org/10.1093/pcp/pcac086. Chen Z., Lançon-Verdier V., Signor C., She Y., Kang Y., and Verdier J., 2021, Genome-wide association study identified candidate genes for seed size and seed composition improvement in M. truncatula, Scientific Reports, 11(1): 4224. https://doi.org/10.1038/s41598-021-83581-7 Czyż K., Książkiewicz M., Koczyk G., Szczepaniak A., Podkowiński J., and Naganowska B., 2020, A tale of two families: whole genome and segmental duplications underlie glutamine synthetase and phosphoenolpyruvate carboxylase diversity in narrow-leafed lupin (Lupinus angustifolius L.), International Journal of Molecular Sciences, 21(7): 2580. https://doi.org/10.3390/ijms21072580 He L., Zhao H., He J., Yang Z., Guan B., Chen K., Hong Q., Wang J., Liu J., and Jiang J., 2020, Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting, The Plant Journal, 103(6): 2225-2235. https://doi.org/10.1111/tpj.14894 Kaur P., Lui C., Dudchenko O., Nandety R., Hurgobin B., Pham M., Aiden E., Wen J., and Mysore K., 2021, Delineating the Tnt1 insertion landscape of the model legume Medicago truncatula cv. R108 at the Hi-C resolution using a chromosome-length genome assembly, International Journal of Molecular Sciences, 22(9): 4326. https://doi.org/10.3390/ijms22094326 Koenen E., Ojeda D., Steeves R., Migliore J., Bakker F., Wieringa J., Kidner C., Hardy O., Pennington R., Bruneau, A., and Hughes C., 2019, Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies, The New Phytologist, 225: 1355-1369. https://doi.org/10.1111/nph.16290 Kreplak J., Madoui M., Cápal P., Novák P., Labadie K., Aubert G., Bayer P., Gali K., Syme R., Main D., Klein A., Berard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Terezol M., Huneau C., Turo C., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J., Batley J., Paslier M., Ellis N., Warkentin T., Coyne C., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., and Burstin J., 2019, A reference genome for pea provides insight into legume genome evolution, Nature Genetics, 51: 1411-1422. https://doi.org/10.1038/s41588-019-0480-1 Lee C., Choi I., Cardoso D., Lima H., Queiroz L., Wojciechowski M., Jansen R., and Ruhlman T., 2021, The chicken or the egg ? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes, The Plant Journal, 107(3): 861-875. https://doi.org/10.1111/tpj.15351

RkJQdWJsaXNoZXIy MjQ4ODYzNA==