LGG_2024v15n3

Legume Genomics and Genetics 2024, Vol.15, No.3, 140-151 http://cropscipublisher.com/index.php/lgg 150 Clúa J., Roda C., Zanetti M., and Blanco F., 2018, Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis, Genes, 9(3): 125. https://doi.org/10.3390/genes9030125. Dall’Agnol R., Ribeiro R., Delamuta J., Ormeño-Orrillo E., Rogel M., Andrade D., Martínez-Romero E., and Hungria M., 2014, Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil, International Journal of Systematic and Evolutionary Microbiology, 64(Pt_9): 3222-3229. https://doi.org/10.1099/ijs.0.064543-0. diCenzo G., Zamani M., Checcucci A., Fondi M., Griffitts J., Finan T., and Mengoni A., 2018, Multidisciplinary approaches for studying rhizobium-legume symbioses, Canadian Journal of Microbiology, 65(1): 1-33. https://doi.org/10.1139/cjm-2018-0377. Dwivedi S., Sahrawat K., Upadhyaya H., Mengoni A., Galardini M., Bazzicalupo M., Biondi E., Hungria M., Kaschuk G., Blair M., and Ortiz R., 2015, Advances in host plant and Rhizobiumgenomics to enhance symbiotic nitrogen fixation in grain legumes, Advances in Agronomy, 129: 1-116. https://doi.org/10.1016/BS.AGRON.2014.09.001. Fahde S., Boughribil S., Sijilmassi B., and Amri A., 2023, Rhizobia: a promising source of plant growth-promoting molecules and their non-legume interactions: examining applications and mechanisms, Agriculture, 13(7): 1279. https://doi.org/10.3390/agriculture13071279. Friesen M., 2012, Widespread fitness alignment in the legume-rhizobium symbiosis, The New Phytologist, 194(4): 1096-1111. https://doi.org/10.1111/j.1469-8137.2012.04099.x. Hawkins J., and Oresnik I., 2022, The rhizobium-legume symbiosis: co-opting successful stress management, Frontiers in Plant Science, 12: 796045. https://doi.org/10.3389/fpls.2021.796045. He C., Gao H., Wang H., Guo Y., He M., Peng Y., and Wang X., 2020, GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean, Molecular Plant, 14(3): 488-502. https://doi.org/10.1016/j.molp.2020.12.015. Heath K., Podowski J., Heniff S., Klinger C., Burke P., Weese D., Yang W., and Lau J., 2020, Light availability and Rhizobiumvariation interactively mediate the outcomes of legume-rhizobium symbiosis, American Journal of Botany, 107(2): 229-238. https://doi.org/10.1002/ajb2.1435. Hoang N., Tóth K., and Stacey G., 2020, The role of microRNAs in the legume-rhizobium nitrogen-fixing symbiosis, Journal of Experimental Botany, 71(5): 1668-1680. https://doi.org/10.1093/jxb/eraa018. Igiehon N., Babalola O., Cheseto X., and Torto B., 2020, Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress, Microbiological Research, 242: 126640. https://doi.org/10.1016/j.micres.2020.126640. Ilangumaran G., Schwinghamer T., and Smith D., 2021, Rhizobacteria from root nodules of an indigenous legume enhance salinity stress tolerance in soybean, Frontiers in Sustainable Food Systems, 4: 617978. https://doi.org/10.3389/fsufs.2020.617978. Janczarek M., Rachwał K., Marzec A., Grządziel J., and Palusińska-Szysz M., 2015, Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions, Applied Soil Ecology, 85: 94-113. https://doi.org/10.1016/J.APSOIL.2014.08.010. Laranjo M., Alexandre A., and Oliveira S., 2014, Legume growth-promoting rhizobia: an overview on the Mesorhizobiumgenus, Microbiological Research, 169(1): 2-17. https://doi.org/10.1016/j.micres.2013.09.012. Lemaire B., Dlodlo O., Chimphango S., Stirton C., Schrire B., Boatwright J., Honnay O., Smets E., Sprent J., James E., and Muasya A., 2015, Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the core cape subregion (South Africa), FEMS Microbiology Ecology, 91(2): 1-17. https://doi.org/10.1093/femsec/fiu024. Lupwayi N., Clayton G., and Rice W., 2006, Rhizobial inoculants for legume crops, Journal of Crop Improvement, 15: 289-321. https://doi.org/10.1300/J411v15n02_09. Mabrouk Y., Hemissi I., Salem I., Mejri S., Saidi M., and Belhadj O., 2018, Potential of rhizobia in improving nitrogen fixation and yields of legumes, Symbiosis, 107(73495): 1-16. https://doi.org/10.5772/INTECHOPEN.73495. Marx H., Minogue C., Jayaraman D., Richards A., Kwiecien N., Siahpirani A., Rajasekar S., Maeda J., Garcia K., Valle-Echevarria A., Volkening J., Westphall M., Roy S., Sussman M., Ané J., and Coon J., 2016, A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti, Nature Biotechnology, 34: 1198-1205. https://doi.org/10.1038/nbt.3681. Masson-Boivin C., Giraud E., Perret X., and Batut J., 2009, Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes, Trends in Microbiology, 17(10): 458-466. https://doi.org/10.1016/j.tim.2009.07.004.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==