LGG_2024v15n3

Legume Genomics and Genetics 2024, Vol.15, No.3, 118-125 http://cropscipublisher.com/index.php/lgg 124 Acknowledgments The authors extend sincere thanks to two anonymous peer reviewers for their invaluable feedback on the manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Dong L., Sun Y., Zhao K., Zhang J., Zhang Y., Li X., Xun S., Zhang J., Wang S., and Li Y., 2019, Development and application of EST-SSR markers for DNA fingerprinting and genetic diversity analysis of the main cultivars of black locust (Robinia pseudoacacia L.) in China, Forests, 10(8): 644. https://doi.org/10.3390/F10080644 Dwivedi S., Sahrawat K., Upadhyaya H., Mengoni A., Galardini M., Bazzicalupo M., Biondi E., Hungria M., Kaschuk G., Blair M., and Ortiz R., 2015, Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes, Advances in Agronomy, 129: 1-116. https://doi.org/10.1016/BS.AGRON.2014.09.001 Euring D., Janz D., and Polle A., 2020, Wood properties and transcriptional responses of poplar hybrids in mixed cropping with the nitrogen-fixing species Robinia pseudoacacia, Tree Physiology, 41(5): 865-881. https://doi.org/10.1093/treephys/tpaa144 Grünewald H., Böhm C., Quinkenstein A., Grundmann P., Eberts J., and Wühlisch G., 2009, Robinia pseudoacacia L.: a lesser known tree species for biomass production, Bioenergy Research, 2: 123-133. https://doi.org/10.1007/s12155-009-9038-x Guo Q., Cao S., Dong L., Li X., Zhang J., Zhang Y., Zhang Z., Sun Y., Long C., Fan Y., Han C., Han P., Liu X., and Li Y., 2021,. Genetic diversity and population structure of Robinia pseudoacacia from six improved variety bases in China as revealed by simple sequence repeat markers, Journal of Forestry Research, 33: 611-621. https://doi.org/10.1007/S11676-021-01356-2 Guo Q., Sun Y., Zhang J., and Li Y., 2022, Variation of phenotypic and physiological traits of Robinia pseudoacacia L. from 20 provenances, PLoS One, 17(1): e0262278. https://doi.org/10.1371/journal.pone.0262278 Hu S., Jiao J., Kou M., Wang N., García-Fayos P., and Liu S., 2021, Quantifying the effects of Robinia pseudoacacia afforestation on plant community structure from a functional perspective: new prospects for management practices on the hilly and gullied Loess Plateau, China, The Science of the Total Environment, 773: 144878. https://doi.org/10.1016/J.SCITOTENV.2020.144878 Kalmykova E., Kuzmin P., Melnik K., and Sapronova D., 2022, Comprehensive evaluation of Robinia pseudoacacia L. seedlings in an irrigated nursery for use in forestry and gardening in the lower Volga region, The Agrarian Scientific Journal, 2022: 38-42. https://doi.org/10.28983/asj.y2022i11pp38-42 Luo Y., Yuan Y., Wang R., Liu J., Du N., and Guo W., 2016, Functional traits contributed to the superior performance of the exotic species Robinia pseudoacacia: a comparison with the native tree Sophora japonica, Tree Physiology, 36(3): 345-55. https://doi.org/10.1093/treephys/tpv123 Malvolti M., Olimpieri I., Pollegioni P., Cseke K., Keserű Z., and Rédei K., 2015, Black Locust (Robinia pseudoacacia L.) Root cuttings: diversity and identity revealed by ssr genotyping: a case study, South-east European Forestry, 6: 201-217. https://doi.org/10.15177/SEEFOR.15-19 Mierzwa B., Wdowiak-Wróbel S., Kalita M., Gnat S., and Małek W., 2010, Insight into the evolutionary history of symbiotic genes of Robinia pseudoacacia rhizobia deriving from Poland and Japan, Archives of Microbiology, 192: 341-350. https://doi.org/10.1007/s00203-010-0561-0 Roman A., Truta A., Morar I., Viman O., Dan C., Sestras A., Holonec L., Boscaiu M., and Sestras R., 2022, From seed to seedling: influence of seed geographic provenance and germination treatments on reproductive material represented by seedlings of Robinia pseudoacacia, Sustainability, 14(9): 5654. https://doi.org/10.3390/su14095654 Roy S., Liu W., Nandety R., Crook A., Mysore K., Pislariu C., Frugoli J., Dickstein R., and Udvardi M., 2019, Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation, Plant Cell, 32: 15-41. https://doi.org/10.1105/tpc.19.00279 Wei G., Chen W., Chen W., Zhu W., Chen C., Young J., and Bontemps C., 2009, Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobiumand Sinorhizobiumspecies that share similar nodulation genes with native American symbionts, FEMS Microbiology Ecology, 68(3): 320-328. https://doi.org/10.1111/j.1574-6941.2009.00673.x Weidner S., Pühler A., and Küster H., 2003, Genomics insights into symbiotic nitrogen fixation, Current Opinion in Biotechnology, 14(2): 200-205. https://doi.org/10.1016/S0958-1669(03)00022-3 Yaegashi S., Omura T., and Watanabe K., 2020, Spatial genetic structure of the invasive tree Robinia pseudoacacia to determine migration patterns to inform best practices for riparian restoration, AoB Plants, 12(5): plaa043. https://doi.org/10.1093/aobpla/plaa043

RkJQdWJsaXNoZXIy MjQ4ODYzNA==